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MECHANICAL BEHAVIOR OF SEA ICE

Malcolm Mellor

INTRODUCTION

.5 This review deals with properties of sea Ice that are relevant to
mechanical behavior on a fairly small scale. The main concern Is with
polycrystalline Ice that Is more or less intact. This sets the lower lim:'
of scale not far below 0.1 m, and the upper limit around 10 m. However,
the discussion is extended to cover the behavior of fragmented ice over

* broader areas. The latter discussion Is intended to bridge the gap between
this review, which relates to small-scale natural processes and engineering
problems, and companion reviews, which deal with the mechanics of sea Ice
over very large areas.

Part I is a selective summary of the basic theory which is applicable
to Ice mechanics. This theory defines the various mechanical properties
that have to be measured, and It provides a framework for the solution of
practical (boundary value) problems. Since ice displays a wide range of
behavioral characteristics, from elasticity and brittle fracture to ductil-
ity and plastic yielding, It is Important to have a good appreciation for
the various theories that might apply In different ranges of behavior.

Part II summarizes measured values for common mechanical properties.
Most of the data are derived from field tests or laboratory tests on fairly
small specimens (minimum linear dimension typically < 0.1 m for lab speci-
mens, or < 2 a for in-situ field tests). The summary is selective, and it
does not Include some older data which are judged to be erroneous or mis-
leading. A great deal of the information refers to Ice that is non-saline,
and this calls for a word of explanation.

By convention, the term "sea ice" covers all types of ice formed by
direct freezing of seawater, but it does not cover Icebergs (i.e. glacier
Ice), or freshwater ice flushed into the sea by rivers. First-year sea Ice
Is a very complicated substance - an anisotropic crystalline solid con-
taining bubbles of air, pockets and films of brine, and sometimes solid
salts. However, not all sea Ice is significantly saline, or even aniso-
tropic. Multi-year Ice, which is of great concern in Ice navigation and
off shore structural engineering, may be of very low salinity and without
significant anisotropy where large masses are concerned. It Is therefore
useful to regard sea Ice not as a unique and exotic material, but simply as
a variant of freshwater ice. The complications introduced by salinity and
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structure are important, but not to the extent that sea ice need be re-
garded as something wholly different from freshwater ice. In Part 11 of
this review, the mechanical properties of sea Ice are discussed In relation
to the properties of freshwater ice. This is largely a matter of practi-
cality, since non-saline has been studied in more detail than sea ice.
However, there Is another justification, In that the effects of salinity
have to be referred to a zero salinity state, the effects of porosity have
to refer to a zero porosity datum, and anisotropy has to be compared with
Isotropy.

Part III discusses the mechanical behavior of ice that has been f rag-
mented, either by natural processes or by human activities. The discussion
covers brash ice and Ice rubble, but it does not deal with mush ice (which
is somewhat like saturated snow), or with pack ice (broad expanses of ice
floes).

Ideally, a review such as this ought to conclude with a major section
on the application of the theory and the measured properties to the solu-
tion of boundary value problems. However, during this assignment there wasA
insufficient time to complete such a task.

2



PART 1. GENERAL BACKGROUND TO THE
MECHANICS OF DEFORMABLE SOLIDS

Ice mechanics is concerned largely with the interactions of forces and
deformations. When a force acts on a material it deforms, and the deforma-
tion may culminate in rupture of the material. We have to consider: 1)
force, 2) deformation, and 3) the property of the material which controls
the relation between force and deformation.

STRESSES, STRAINS AND THEIR TIME DERIVATIVES

* Force and stress

Force (P) is the product of mass times acceleration, and it has the
dimensions MLT-2 , where these symbols represent respectively mass, length
and time. Traditional engineering units include pounds force and kilo-
grams force, which should properly be abbreviated as "lbf" and "kgf" as a
reminder that they are units of force, not mass. The distinction is
important for non-gravitational inertial forces, where pounds and kilograms
have to be divided by the gravitational acceleration g. In physics, and in
engineering research, dynes or newtons are more likely to be used as units
of force.

Stress (o) is force per unit area, so that it has dimensions ML-1

Traditional engineering units include pounds per square inch (lbf/
in. or in archaic notation, psi), and kilograms per square centimetre
(kgf/cmZ). The metric units in common use for ice mechanics research are

* dynes/cm2, newtons/m 2 (or pascals), and bars, where 106 dynes/cm2  1 bar -

0.1 MN/m2  0.1 MPa = 1.02 kgf/cm2 = 14.5 lbf/in 2 . Stresses may be either:
1) normal stresses, produced by tensile or compressive forces acting per-
pendicular to the faces of cubic elements, or 2) shear stresses, produced
by tangential forces acting parallel to the surfaces of cubic elements. In
a three-dimensional stress field, the stress system can also be resolved
into: 1) an Isotropic component, or bulk stress, which tends only to change
the volume of an element, and 2) a deviatoric component, which tends to
change the shape of an element.

Displacement and strain

Displacement (u) is the movement of one point relative to another,
resulting in increase or decrease of a linear dimension. The physical
dimension of displacement is L, and typical units are inches, feet, miles,
millimetres, metres, etc.

Strain (e) is displacement per unit length, and it is therefore
dimensionless. Although there are no units for strain, engineers sometimes
use implied multiples, e.g. "microinches per inch," a number which is

3



strain x 106, or "percent strain," a number wk.ich is strain x 102. Where
strain is displacement per unit of length in the direction of displacement,
it is referred to as a normal strain. Where the strain is displacement per
unit of length in a direction perpendicular to the direction of displace-
ment, it is referred to'as a shear strain. In a three-dimensional strain

*field the strain can be resolved into: 1) an isotropic component, or
volumetric strain, representing change in volume (and density) of an
element, and 2) a deviatoric component, representing change in the shape of
an element.

Variation of force, stress, displacement
and strain with respect to time

Loading rate is the rate of change of force with time, dP/dt. It has
dimensions MLT- ', and units such as lbf/min or N/s.

Stress rate is the rate of change of stress with time do/dt or a.
The dimensions are ML- ' T- 3 , and typical units are lbf/in. -s, bar/s, or
Pa/s. ar

Velocity is the rate of change of displacement with time, du/dt or u.
Dimensions are LT-1 and typical units are ft/s, knots, m/s, etc.

Strain rate is the rate of change of strain with time dc/dt or

Dimensions are T and typical units are s- , yr-

Acceleration (f) is the rate of change of velocity with ttme, or the
second derivative of displacement with respect to time. d2 u/dtr or U.
Dimensions are LT-2 and typical units are ft/s 2 or i/s

Strain acceleration is the rate of change of strain rate with time, or
the second derivative of strain with respect to time, d2c/dt2 or C. Dimen-
sions are T- 2 , and typical units s- 2,

RHEOLOGICAL PROPERTIES OF MATERIALS

The relationships between stress, strain and time for typical engi-
neering materials can seem fairly simple, for example if stress is directly
proportional to strain. However, this is true only for very restricted
ranges of stress, strain and temperature, and over a sufficiently broad
range of conditions virtually all materials experience time-dependent in-
elastic deformations. To introduce some of the more complicated aspects of
rheology, it is convenient to first consider simple mechanisms, or models,
which have stress/strain/time characteristics similar to those displayed by
deformable solids.

Elasticity

Linear elasticity means that stress is directly proportional to strain
(Fig. 1), and the coefficient of proportionality is called the elastic
modulus. For one-dimenslonal stress and strain, the ratio of stress to
strain, o/c, is called Young's modulus E, and the relationship is known as
Hooke's Law. The elastic modulus has the dimensions of a stress, i.e.

4
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LINEAR ELASTICITY
(Hooke's Low)

Spring -1

LINEAR VISCOSITY a
(Newtonion Viscosity)

Daskpot YedPita~

IDEAL PLASTICITY

(Saint-Venont) a

k

Block with Dry Friction

Figure 1. Simple rheological responses
and models.

ML- 1 T - 2 . In a rheologcal model, linear elasticity is represented by a

*spring of modulus E, so that a = Ec.

Viscosity

Linear viscosity, which is also referred to as Newtonian viscosity,
means that stress a is proportional to strain rate e (Fig. 1). The coeffi-
cient of proportionality n is the viscosity, or viscosity coefficient, and
it has dimensions ML- T- . In a theological model, viscosity is repre-
sented by a dashpot. In the dashpot, force and velocity are proportional
and we can cut the corner a little by letting the dashpot represent.propor-

* tionality between stress a and strain rate ;, i.e. a - i dc/dt - n e. It
is worth pointing out at this stage that viscosity is frequently nonlinear,
i.e. stress is a function of strain rate, but is not directly proportional.

* However, introduction of nonlinear viscosity into simple rheological models
destroys their value as learning tools.

*Plasticity

Ideal plasticity, or rigid-plastic behavior, means that there is no
strain In the material until a critical yield stress k is reached, after
which the material strains indefinitely at indeterminate speed (Fig. 1).

N The name Saint-Venant is sometimes associated with ideal plastic behavior.
In a rheological model, plasticity is represented by a block lying on a
plane, with dry friction between the block and the plane. The upper limit
of the static friction force is assumed equal to the kinetic friction
force, so that It can represent a simple yield stress k. With a < k,
' -0; with a k, e + W.

5o



Combinations of rheological properties

We can take it as an axiom that all real materials possess all rheo-
logical properties, but the relative significance of any component will
vary with the physical environment, the stress state, and the time scale of
events. For example, a material will be predominantly elastic with low
deviatoric stress, high rates of stress or strain, short load-duration, and
low temperature (relative to the melting point). The same material may be
predominantly viscous, or plastic, with high deviatoric stress, low rates
of stress or strain, long load duration, and high homologous temperature.

The real difficulties arise when the conditions are such that two or
more types of theological behavior are of comparable significance. To
explore situations of this kind we can look first at some two-element rheo-
logical models and then at three- and four-element models. There is, of
course, no limit to the number of elements that can be built into a model,
but at some stage refinements become pointless. A model consisting of
linear elements is not truly representative of real materials, and its
chief merit is as a simple device for visualizing rheologic responses.

RHEOLOGICAL MODELS

Two-element models for linear viscoelasticity

(a) The Maxwell model. This model consists of a spring and a dashpot
in series, and It is easy to see how it behaves when constant force, or
constant stress, is applied (Fig. 2). For constant stress a across the
system, the stress/strain relation for the spring is

a - Ee
S

where es is the strain in the spring. The stress/strain-rate relation
for the dashpot is

a Ti C

where ;D is the strain rate of the dashpot. The total strain of the

system at time t is the sum of the strain in the spring and the accumulated
strain in the dashpot:

C = C + cD

or, differentiating with respect to time,

66 +
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Since

5-(1/E)

and

the overall strain rate is

- (1/E); + (1/n) a

The required solution of this differential equation for constant stress
applied at time t = O, £ = 0, is

'(1 + 1 t)

(b) The Kelvin-VoIgt model. This model consists of a spring and
dashpot In parallel. When constant force, or constant stress, is applied
across this system, the spring extends to its equilibrium length, but at a
decelerating rate, i.e. the spring is damped (Fig. 2). The strain is the
same for the spring and the dashpot, but stress is different in the two
elements. In the spring

S-Ec
5

and in the dashpot

Overall,

0- + 0
5 D

- Ec + n d

-(E + r

The required solution for stress applied at t = 0, e = 0 is

£ o ~ (1 -e - E q t

E: 



LINEAR VISCO-ELASTIC
(Maxwell) E 0. Constant

* .'vwv-J--- C. /17
E 77

LINEAR VISCO-ELASTIC
(Ielvin-Voillt) C.0/E

*Constant

17t

ELAST IC-PLATIC
(Prondil) T0

E

VISCO-PLASTIC o

* (Bingham)

* . ELASTIC -VISCO- PLASTIC

~ Elastic up to Or -k

Figure 2. Two-element rheologIcal
models.

Two-element models for elastoplastic and viscoplastic behavior

(a) Elastic-plastic model. This model, sometimes associated with the
*name of Prandt, consists of a spring and a friction block In series (Fig.
*2). For a < k, a - Ec, but when a - k, E: - a/E + eplass where eplas Is
*the indeterminate plastic strain.

(b) Viscous-plastic model. The simplest viscous-plastic model is a
* series combination of a dashpot and a friction block. For a < k, a

while at a kq F_ > (1/nk.

8
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(c) Viscoplastic model. This model, sometimes associated with the
name Bingham, consists of a dashpot and a friction block connected In such
a way that the dashpot cannot move until the block slips (Fig. 2). If a >
k,

a - k+n e:

Multi-element models

Perhaps the most useful multi-element model for Introducing general
viscoelastic response is one known as the Burgers' model. It consists of a
Maxwell model in series with a Kelvin-Voigt model (Fig. 3). The general
differential equation can be derived by considering constant stress across
the model. Using subscripts M and K to denote respectively the Maxwell and
Kelvin-Voigt units, and using additional subscripts S and D for spring and
dashpot respectively, the overall strain is

MS MD +c

In the Maxwell spring

o 0 EM 'MS

and in the Maxwell dashpot

"r M MD

In the Kelvin-Volgt unit

o - EK eK + 1K ;K"

After suitable differentiation, these relations give the general
differential equation

EM
+ EM +EM +EK) + MEK a E EM

This equation can be solved for various sets of Initial conditions and
boundary conditions to give relations of special interest. In Figure 3,
solutions are given for constant stress, for constant strain rate, and for
constant stress rate.

9
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THREE-DIMENSIONAL STRESS AND STRAIN

The preceding ideas are easy to understand in one-dimensional or
simple two-dimensional situations, but three-dimensional systems are a
little more complicated.

External forces acting on a body

The external forces acting on a body may include surface forces and
body forces. Surface forces, or surface tractions, are distributed over
area. Body forces are distributed over volume. They are typically grav-
ity, inertia, or magnetic forces.

In considering the forces on an element, it may be permissible to neg-
lect body forces, since they diminish with the cube of a linear dimension,
whereas surface forces diminish with the square of a linear dimension.

Components of stress

Any system of stress can be resolved into a set of orthogonal compon-

ents. If we define an element with respect to the axes of a cartesian
coordinate system, the stress acting on that element can be resolved Into
nine components, which reduce by symmetry to six components.

We can denote all stress components by a, differentiating between
normal and shear stresses only by the subscripts, as in Figure 4. Normal
stresses which act in a tensile sense are considered positive.

The first subscript indicates the direction of the normal to the plane
on which the stress acts; the second subscript gives the direction in which
the stress acts. For a normal stress, first and second subscripts are
alike. For a shear stress, the two subscripts are different.

y
Ozz

%Y -I

a. In x, y, z notation. b. In 1, 2, 3 notation.

Figure 4. Components of stress.
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We can set out these stress components In a matrix, which has nine
components:

a a a
xx xy xz

o a a
yx yy yz

a a a
zx zy zz

Note that, from consideration of the equilibrium of the element, ax
- ax, ax - z yz - . This reduces the number of independent com-
ponents to six, and the matrix Is now symmetrical about the diagonal terms.

Now, we can make the above notation more compact In the following
way. If, instead of x, y, z, we use the labels xl, x2, x3 for the coordi-
nate axes, we can then replace the subscripts x, y, z with the numerals 1,
2, 3, as in Figure 4b.

Our stress matrix becomes

ll (12 013

a21  02 2  023

031 032 033

This we call the stress tensor. It can be written more compactly as

iiJ

where I,j - 1, 2, 3, I.e. If we write down In order all the possible com-
binations (permutations) of the values 1, 2 and 3 for I and J, we obtain
all the terms of the stress tensor.

The stress tensor Is a symmetric tensor of the second rank, or second
order. As a matter of interest, vectors and tensors have the following
numbers of components:

Scalar, S 1 component

Vector Vi 3 components (first rank tensor)

Tensor II Tij 9 components

Tensor III TIjk 27 components

Tensor IV Tijkf 81 components

The number of subscripts gives the order or rank, while 3 raised to a power
equal to rank gives number of components.

12



Strain

In considering strain, it is convenient to assume that strains will be
small and homogeneous.

Infinitesimal strain. These are strains sufficiently small that
powers higher than the first can be neglected, e.g. squares and products of
strains are negligible.

Homogeneous strain. Strain is homogeneous if planes remain plane, and

parallel planes remain parallel.

Components of strain

Any system of strain can be resolved into nine orthogonal components,
with normal and shear strains corresponding to the components of stress.

We shall assume for a start that there is no rigid-body rotation rela-
tive to the reference axes, i.e. only deformation of the body.

When a body is deformed, the displacement of each point P can be
expressed in terms of three components of displacement, u, v, w, In the
directions x, y, z, respectively (Fig, 5).

The gradients of u, v, w with respect to x, y, z are strains.

* For simplicity we can derive the strain components in two dimensions
only (Fig. 6):

2" "xy xy 2 3y ax

2 yz yz m23 -3z ay

Yzx zx 231 ax! ;

Now we can write the strain tensor:

F11 £12 £13

Cij - £21 £22 £23

£31 £32 £33

Or, In terms of the displace..,it gradients,

£ - " :-
ij 2 3ax ax1

13
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r. z

P1

4.W

-7

P 'i'

Ludy

V+dy _________

dy

ax

u + Tdxax

d dx

Figure 6. Displacement gradients and strains.

That Is,

au, 1 + au, 3uL hu2
C1 -12 £13 ax1  2 3x2 +ax) 2{ 3X ax,

21 £22 £23 2 ax, 3x2  ax2 (--. ua a(2-axU- + ax )

31 32 £33 1 a-ua au') 1 au21 +____ u+ x ax3) 2 8x2 + X 8"' x3

Rotation. Referring back to the diagram for strain derivation, it will be
seen that if (u/3y)dy (v.x)dx, the element undergoes rotation as well
as pure deformation.

14
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auu
Change in length in x-direction - (u + - x - u =

Unit change in x-direction = a x -u
ax

Similarly, y v
ay y

Change in angle in the x-y plane at P, or yxy, is

au + vY Tx = + -L .
Y y ax

By identical considerations for the yz and zx planes we obtain the
remaining components:

au avaw" xx ax Cyy = y zz wa

u av

av aw
Y -Y +yz zy z "y

aw au
zx = xz = x + "

Yxy, Yyx Yzx are the components of shear strain according to
the classical, or engineering, definitions. In order to utilize the tensor
system we adopt a slightly different form for the shear strains. We
denote all strain components by e, and replace subscripts x, y, z by 1, 2,
3, as in the case of stress, getting:

au= Ell = a
xx ax

av£ = £22 -
yy ay

. = aw
"zz is az

.- l =-- Lu + Lv,xy - 3xy - £12 3y ax

1 1 bv + 3)2Yyz yz £23 + z +

1 = /'w + @u

2 zx 'x " 31 j (rx a z

15



Now we can write the strain tensor:

£11 £12 £13

J = £21 £22 £23

C31 £32 £33

aui
Defining a displacement gradient tensor e i

aui =_ aul au auI  au.ei ax

a u 1 i uj ' u Iu

I aux au

a +-- -i) C is a symmetric tensor, with c = £
j/(x a I j ii Ci

au,
/2(ax = is an antlsymmetric, or skew symmetric,

tensor, with wii = -wji; wij is the ro-

tation tensor. Diagonal terms = 0.

TRANSFORMATION EQUATIONS

. Rotation of reference directions for stress components

Having defined the components of stress and strain with respect to a
* given set of coordinate axes, we have to consider now the resolution, or

transformation, of stress and strain into a different set of directions
(Fig. 7).

X3  X 3

Coslx X 3) Y 013z

2 Cos (x; xz) 022

x Figure 7. Rotation of

-x'axes.
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Denoting the direction cosine by a, the transformation matrix is:

X1 X2 X3 old directions

xv all a12  a13

x' a:2 a22 a23
2

new directions ~ ~ ~ 3

3

From a consideration of the equilibrium of the tetrahedron (Fig. 8),
*with px, pyp as cartesian components of stress on the oblique

plane, it can be shown that:

a a p + a p + a p
nn nx x ny y nz z

+a (a a + a a +a a a
ny nx xy nyyy nz zy

+ a nz(anx a x + a ny a y + a nza Y)

a a 2 (a aa +a a 2+a

xx nx yy ny zz nz

+ 2 a a a + 2a a a + a a a
xy nxny yz ny nz zx nznx

* and similarly

*a a a a + a a a + a a a
ns xx nx sx yy ny sy ~znzsz

+ (a a + a a )a + (a a + a a )a + (a a + a a I
nx sy ny sx xy nx sz nz sx xz ny sz nz sy yz

C

(Onn(resultant normal stress)

(resultantp
shear stresS)

Figur 8. Reulan 
trsse

on aeeraeraclae

PP Y
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If we now introduce into our tensor notation a summation convention,
such that all terms containing a repeated suffix are summed, we can write

" ..*the above equations in compact form:

a =a 1  a ann n nj ii

a.n a a a
ns ni sj ij

If n and s are the x' and y' axes of the transformed system, the
complete transformation is given by

a = a a ans ni si ij

Principal directions

By a suitable rotation of the axes x, y, z to a new set of directions
x', y', z', the shear components of the transformed system can be made to
disappear while the normal components reach extreme values. These new
normal components are called principal stresses, and the planes on which
they act are principal planes.

Suppose the plane ABC in Figure 8 has been rotated so as to coincide
with a principal plane. Thus ans 0, and ann is a minimum, which we

shall just denote as a.

Then

a a - Px a +a a + a a
nx xx xx ny yx nz zx

Sp a a +a a +a a
ny y nx xy ny yy nz zy

aa = = a a + a a +a a

nz nx xz ny yz nz zz

That is,

( -a)a +a a +a a i 0xx nx yx ny zx nz

a a +(a -ao)a + a a =0

xy nx yy ny zy nz

a a + a a + (a - a)a 0
xz nz tz ny zz nz

Since the direction cosines cannot all be zero (the condition for ortho-
gonality is a2nx + a2ny + a2n = 1), the determinant of their coeffi-
clents must equal zero, I.e.

a3 -(a +ayy+a 0 + (a a +a a +0 a -a 2  -a 2  -0 2
xxyy ZZ xx yy yy zz zz xx Xy yz zx ) a

- (a O aa -a a2  -a a 2  - a2  +2 a axxyyzz xx yz yy xz zz xy xy yz xz

18
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There are three real roots of this cubic equation in a: O, 02, 03.
These are the principal stresses. They depend only on the state of stress
at a point, and not on the system of coordinates. Thus the coefficients of
the cubic equation are the same for any coordinate system, i.e. they are
Invariant with rotation of the reference. The first, second and third
invariants of stress are:

I, = a + a + a M al + a2 + 03

xx yy zz

- -+ a a= + o a a ) + 02 + 02 +
12 - (xx yy yy zz zz xx) xy yz zx

. - (0102 + 0203 + 0301)

13 0 0 0 a o 2 a oao2 -o 02 + 2 o 0 0
xx yy zz xx yz yy zx zz xy xy yz xz

= 010203

Strain transformations

There are corresponding transformation equations for strain. They are
completely analogous to the stress transformations if we use the tensor
components of shear strain e , etc., rather than Yxy, etc. Principal
strains are analogous to principal stresses, and we also have invariants of
strain analogous to the stress invariants.

ISOTROPIC AND DEVIATORIC COMPONENTS OF STRESS AND STRAIN

Bulk stress and deviatoric stress

There is a particular scheme of stress resolution which is used a good
deal In the consideration of flow laws and failure criteria. It has
obvious physical significance.

Bulk stress, or volumetric stress, Is that combination of stress com-
ponents which tends to change the volume of an element. Bulk stress, a, Is

y -'( + a + ) "R( +  2+03)

l.e the average normal pressure. In the case of a fluid the bulk stress Is
the hydrostatic pressure (O. - yy

Using the tensor rotation with the summation convention (adding terms
formed from repeated suffixes): 3]

19
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i.e

oa" -Yll + 02 + 033)

We note that the bulk stress is equal to one-third of the first
invariant of stress:

Deviatoric stress (shear stress) tends to change the shape of an element.
Deviators are denoted by primes. In tensor notation:

"ii 11i 3 "kk
* . .r

Here we have introduced two new additions to the scheme of tensor nota-
tion. The symbol 5jj is known as the Kronecker delta and it can take one

* of two values:

when I-i , $Sijal

when I J , J 0

The subscripts k are "dummy suffixes."

Examples of the application of this scheme are:

a 011 - 3(11 + 022 + 033)

0' = 012 - 0 =0 C12.
12

A deviatoric stress is sometimes called a "reduced stress."

Bulk strain and deviatoric strain

Bulk strain and deviatoric strain are analogous to bulk stress and
deviatoric stress respectively. Bulk strain, which is also called volumet-
ric strain, or dilatation, is

= - £ +e + C 1 + C 2 + C 3xx yy zz
or

£ - £l

Note that there is a factor of 3 difference between the expressions for
bulk stress and bulk strain.

20
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Deviatoric strain (shear strain) is

J iJ 3 j kk

I.e., It corresponds to deviator stress in form.

Octahedral stresses

If we take axes parallel to the directions of principal stress, the
directions of principal shear stress form a regular octahedron which has
its corners on the principal axes (Fig. 9).

The direction cosines of the normals to the octahedral planes are
_ 1/ 3.

The octahedral normal stress an oct is

n ",t 01 + 0 2 + 03)
oct

1 2- .- Ii .-

Principal
Directions

I

Figure 9. Octahedral planes. .
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The octahedral shear stress as Oct Is

oa t - 2)2 + (22 - a) + ( 1 - °1)2]11/2

S' Oct 11( 2 (2 0

- :i [12 + 312] 1

If the principal directions are not immediately known, the octahedral
stresses are

a1 + azz
n oct 3 - (o + o)

a oc /Y [a2 +0+02 +3(2 + + +o 1/2

Zoct Y yz zx xx yy yy zz zzx

Invariants of stress and strain deviation

The components of stress deviation a'ij are formed by subtracting
the mean stress from the normal components of stress, but not from the
shear components. Thus the cartesian components of stress deviation are

0'o ,0' , ' =0 -0-

xx Xx yy YY zz zz

a' 0 O 0' =0 a of ao 0
Xy Xy yz yz zx zx

The principal stress deviations are

or 0-0 M -(2O1- 02- 3)

0' - 02 - - -/.22 -o01- o3)

0' - 03 - 0 - (2o3 - 01 - o2)
3

The invariants of stress deviation are:

' + 0' +0 = , + a,+' 0
xx yy zz 1 2 3

2 -(a, a' + 0' a' + o o' ) + 02 + 02 + 02

xx y y zz zz x Y yz zx
S[(0"1 - 02 + (02 3)2 + ("3 - ol)2]

1 [2 + O2 + 0t2]
2 [1 2 3

22
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a a' a' a' + 2 a a a - (a' a2  + a' a2  + a' a2 )
xx yy zz xy yz zx xx yz yy zx zz xy

cri of cy
1 2 3

The octahedral shear stress can be expressed in terms of stress deviation

as

o -1 /2
a - 2J2 /3]/

s Oct

Components of strain deviation, denoted by the symbol e, are formed in
exactly the same way as the components of stress deviation, i.e.

e -e -e, e =e -e, e =e -exx xx yy yy zz zz

e E , e =e
xy xy yz yz zx zx

el 1 - e , e 2 =c2 -e e3 3

where e is the mean normal strain:

=(xx +eyy + /zz3 + 2 +

The invariants of strain deviation are exactly analogous to the

invariants of stress deviation.

ELASTICITY AND LINEAR VISCOSITY

Elastic constants

The basis for study of deformable solids is the theory of elasticity,
which is usually introduced through consideration of an axial push or pull
on a prismatic bar (Fig. 10). The material is assumed to be homogeneous,

Isotropic and linearly elastic, with axial stress proportional to axial
strain

yy yy

and transverse strain proportional to axial strain

VC V-C --y ---
xx zz yy E yy

23



where E is Young's modulus and v is Poisson's ratio. Because the material
is linearly elastic, the principle of superposition can be applied In order
to obtain the strains when stresses axx , ayy, Ozz are acting, e.g.

aVO VO .
yz ZZ _ ,o + a ]•![axAx x E E E zz

Shear stress and shear strain can be related more directly by the shear
modulus, or modulus of rigidity, G:

a -2Gxy xy

It can easily be shown, e.g. by expressing cxy and oXY in terms of
principal stresses, that

E
2(1+v)

Young's modulus and Poisson's ratio are to some extent accidents of
history, and for some purposes it is more convenient to have direct rela-
tions between bulk stress and volumetric strain, and between deviatoric
stress and deviatoric strain. For Isotropic volumetric deformations the
proportionality constant is the bulk modulus K, where

bulk stress a '
K = -

volumetric strain -

3 c~

F
-Do

I I r

ALo

I L4F

EradioIZ'ox~ia

I L

F Figure 10. Axial elastic deformation
of a bar.
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* Deviatoric components are related by the shear modulus G, with the general
* form of the relation expressable as

2c'
i "i

Another constant, Lame's constant A, can be used in association with G.
However, only two constants are required to specify the elastic properties
of an Isotropic material, and the choice of which two is largely a matter
of convenience. The relations between the various elastic constants are:

E 2G(1 + v) A(l + v) 3A + 2C
K = -

3(1 - 2v) 3(1 - 2) 3v 3

G E 3K(1 - 2v) X(1 - 2v) 3(K - X)
2(1 + v) 2(1 + v) 2v 2

vE 2Gv 3Kv 3K - 2G
(1 + v)(1 -2) (1 - 2v) (1 + v) 3

E - 2G 3K- E X A 3K- 2GV, .. G =  - 2"'- ' "
= 2G 6K 2(X +G) 3K-A 2(3K +G)

Solution of problems by theory of elasticity

Practical problems in elasticity are solved by solving certain sets of
equations for appropriate boundary conditions. The sets of equations used
are: 1) equilibrium equations, 2) strain/displacement relations, 3)
compatibility equations, 4) stress/strain relations.

Esuillbrlum equations. The equilibrium equations are derived from
Newton s laws. For static equilibrium the stress components In any direc-
tion sum to zero. In many engineering problems, body forces can be
ignored, but in ice mechanics It Is often necessary to include gravity body
forces. The stress equilibrium equations with body forces included In the
form of gravity forces are:

+ pg1 =0
aj

where p is the density of the material and gi are components of the
gravitational acceleration g.

In rectangular coordinates these equilibrium equations expand as:

-- + y+ + Pg 0

XY + yy + yz + PgY= 0 i;ax ay z -

25

.4 "



ao Do Do
xz +-yz + zz

ax ay a +z z 0

The corresponding equations In cylindrical coordinates are:

+ + +- 0
8r r 3z r rr -r ) + Pgr

r0 1 00 0z 2• .'"g + +  + r  °t + pg0  =f

rz 1 ez + zz 1 + Pg 0
ar r +- az r rz

Strain/displacement relations. The strain/displacement relations have
already been derived and given as

C 1 ('ut + _

- 2 3 a

In rectangular coordinates these expand as:

au au aufi x l _ _x )C xx a-x xy 2 (2 + x
- X .

au au au

£yy Z) =2" +

au 1 u u au

-zx 2 ( "

In cylindrical coordinates they expand as:

au au au u
Sr }1 r +
rr a rr rO 2LrDO Oar r

u 1u au
C +
00 r r DO z 3z r DO

-C au D au rz Izr • z
zz 8z zr 2 3r 3z •

Compatibility equations for strain. If the components of displacement
are given, then the components of strain can be found by appropriate
partial differentiation, as indicated above. If, however, it is the com-
ponents of strain which are given, then certain restrictions must be placed
upon the strains In order to ensure that there are only three values of
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displacement, and that the displacement field is continuous. These re-
strictions are called the compatibility equations, or compatibility condi-
tions.

The compatibility conditions for strain can be written in general form
as

S2ci 32 32 F e
"- kx + xi% a-- +  axi •

axkaxxt + X-0X 3x~ 1 x 3x

This expression represents 81 equations, only 6 of which are independent.
The independent equations are:

xy
2

y +y ax a2x3y

a2e 32C32
+ -n- 2 yz

3z9 3y% 3yaz

zz xa2c x2C zx+ 2
azax

32C 32C 32 32C
xx z + xz xy

ayaz ax xy axaz

.,-a2c a2e: a2e a2F
zx x + yz

azax a ayaz 3yax

32 a2 a2 32C
zz zxa '_ "a- + - -  + "

3x~y 3z azax azay

Elastic stress/strain relations. The stress/strain relations intro-
duce the properties of the material into the consideration. For an iso-
tropic elastic material the general relations can be written in compact

form as:

• ."= 3K

I' 2 G c '

Alternatively, using E and v and expanding for rectangular
coordinates:

"- {Ox - (yy + ZZ)}

yy a {Oyy xx zz
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1 1 ( +1

"-"a , £ { -0 , 0
y 2G Ky xz 2G -xz yz 2G yz

Or, putting stress In terms of strain:

"'="E V "
xx 1 + v (I - 2v) (x y cxx

E

a E V C + C + C + CJyy 1+ v (1 -2v) xx yy zz yy

a 1 + (1 2v) (e + c + )+ }

o = 2G c a 2G , a =2G c
xy xy xz xz yz yz

In cylindrical coordinates the relations can be written as:

rr fa -V(a 0  + C)}rr T rr 00 Z !

Ceo E 6 - rr + zz)}

= V(C + oe,Zz E {zz - 06r1

1 1 1
C -ar are 2 Crz = - rz' Cz = 2-' ez

The preceding sets of equations, together with the boundary conditions
of the problem, provide everything needed for a solution. However, the
various sets of equations can be transformed. For example, the equilibrium
equations can be written for strain instead of stress by applying the
stress/strain relations, and similarly the compatibility conditions can be
given in terms of stress.

Linear viscosity

Linear viscosity is analogous to linear elasticity, and for any solu-
tion to an elastic problem there Is, In principle, a corresponding solution
to a viscous problem, provided certain conditions are met.

In developing the analogy, velocity of viscous deformation corresponds
to elastic displacement, and viscous strain rate corresponds to elastic
strain. The equilibrium equations remain unchanged, provided that there is
slow flow with zero acceleration. The straln/displacement equations are
replaced by strain-rate/velocity relations of identical form, i.e.
replacing u, and e replacing c. Again, there Is a requirement for slow,
non-accelerating flow. The elastic stress/strain equations are replaced by
viscous stress/strain-rate equations. If the material is homogeneous and
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isotropic, the viscous properties can be described by two constants, and It

is convenient to choose these as a "bulk viscosity" n and a shear viscosity

j. Thus

tili

a' = 2ije

For ice of low porosity, it may be permissible to assume incompressibility
in a flow problem, i.e. n is Infinite, and the viscous analogue of
Poisson's ratio Is 1/2.

Plane stress and plane strain

In this summary, the general relations have been given for three-
dimensional stress and strain, but many problems can be simplified as two-
dimensional problems. There are two ways of reducing to two dimensions.
In plane stress, stresses In the z-direction are assumed to be zero,
usually because the x-y planes at the z boundaries are free from normal
stress. In plane strain, displacement gradients, or strains, in the z-
direction are assumed to be zero, usually because the material is perfectly
confined at the limits of z, or because the width of the body in the z-
direction is effectively infinite.

FAILURE CRITERIA

As regards the behavior of a material, the meaning of the term
"failure" is arbitrary. In other words, a material may be said to have
"failed" when It ceases to meet certain arbitrary requirements. For
example, when a typical engineering material fractures it clearly has
failed. However, a material can fall without fracturing, and the defini-
tion of failure might be based on a transition from elastic deformation to
plastic yielding, or on irreversible acceleration of strain rate, or on
development of permanen, strain, or yet again on the development of
internal cracking. Whatever definition of failure is accepted, formal
analysis requires specification of the stress or strain conditions which
control the failure.

Plastic yielding of an isotropic, incompressible solid gives a fairly
simple introduction to failure criteria.

Maximum shear stress criteria (Tresca/von 14ses)

When typical metals are deformed at moderate rates, it is found that 0
the bulk stress a does not influence the onset of plastic yield to any
significant extent. One reasonable assumption is that yielding occurs when

*the maximum shear stress, (a1 - a3)/2, reaches a critical value. This
assumption, or postulate, Is usually called the Tresca criterion, although
it was put forward by Coulomb almost a hundred years before Tresca thought
of it.

- 03 = constant
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Another reasonable postulate is that yielding will occur when the second
invariant of the deviator stress, J2 , reaches a critical value. This
criterion, attributed to von Mises, can be written

10,2 + o,2 + 0,2)
J2 2 1 2 3

- +[(01 02) (02 - ~2+(03 01)2]

- constant

* Another interpretation of the von Mises criterion, credited to Hencky or
- Huber, is that yielding occurs when the elastic strain energy of distortion

reaches a critical value. Since J2 and the octahedral shear stress
as oct have a simple relationship to each other, the von Mises criterion
can be written in terms of octahedral shear stress:

J2  = 2 constant
2 s Oct =cntt

i.e. yielding occurs at a critical value of as oct* In unlaxial tension
or compression, where 02 = a3 = 0, both the Tresca and Mises criteria
require that plastic yielding sets in when the unlaxial stress 0, reaches a
critical value Y, in either tension or compression. The corresponding

* value of the octahedral shear stress is V7 Y/3. The Tresca and von Mises
criteria differ somewhat when they are compared in detail. For example:
1) the intermediate principal stress 02 influences failure according to von
Mises, but not Tresca, 2) the yield stress in pure shear is Y/2 according

. to Tresca, but Y//3 according to von Mises, 3) the yield surface in prin-
cipal stress space is a circular cylinder according to von Mises but a
hexagonal prism according to Tresca, the longitudinal axis being the hydro-
stat line a1 = 02 = 03 in both cases (Fig. 11).

(7 02 "7

0I dimensional principal stress space for

~the Tresca and von Mises criteria.
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Coulomb/Navler/Mohr criteria

The Tresca and von Mises criteria assume that hydrostatic pressure has

no effect on the resistance to shear deformation. While this may be a good

approximation for metals at moderate rates of loading, it is not true for

materials generally. For many materials, especially brittle non-metallic

*i solids, the resistance to shear deformation increases as the hydrostatic

pressure increases. A yield criterion representing this type of behavior

evolved from the work of Coulomb, with subsequent modifications that are

associated with the names Rankine, Navier and Mohr. The Coulomb-Navier, or

Coulomb-Mohr, criterion assumes that failure in an Isotropic material is

determined by the extreme principal stresses 01 and U3, with the inter-

mediate principal stress 02 exerting no influence. It is usually developed

for the two-dimensional case, making the physical assumption that shear

*resistance on a plane is proportional to the "friction" developed on that

plane by normal stress. If the constant "friction coefficient" is denoted

by v or by tan , the criterion becomes P

2 + 1)1/ 2 - ] - 03[(112 + 1)1/2 + ]= 2c

or,

(01 - O ) - ( +  sino = c coso

* where c is a constant identified as the inherent shear strength of the

material under zero normal stress. Since (o - 03)/2 is the maximum shear

stress and (al + 03)/2 is the mean stress, the criterion says that the

maximum shear stress at yielding is equal to a constant plus a multiple of

*the mean stress (Fig. 12). It also appears to imply that the unlaxial com-
pressive strength cc will differ from the uniaxial tensile strength OT

by the factor:

(p2 + 1)1/2 +

T  (l2 + )1/2

but the implicit physical assumption that confining stress should be com-
pressive limits the applicability of the criterion in the tension-compres-

sion quadrants, as shown in Figure 12b, where there is a cutoff at ac/2.

It might be noted that the Tresca criterion can now be regarded as a

special case of the Coulomb-Navier, or Coulomb-Mohr, criterion with * = o.
Taking = o,

(a- 03) = 2c = 0T = C Y

The assumption that the increase of shear resistance Is directly pro-

portional to compressive bulk stress is, of course, an approximation.

Experimental results show that the usual trend is for increases of confin-

ing stress to become less significant as the magnitude of the confining

stress increases. Tn other words, the effective value of 4 decreases as a
increases. A simple way to accommodate this effect is to assume that the
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Figure 12. Linear Coulomb-Navier-Mohr criterion for 4 = 30* .

relation between shear resistance and bulk stress is parabolic or, in other
words, to assume a parabolic Mohr envelope. Assuming that failure is not
influenced by the intermediate principal stress, the form of the relation
is thus

(01 - 3)2 = A(oI + 03) + B

where A and B are constants.

In terms of geometric representation, the two-dimensional linear
CoulombO-Navier criterion can probably be generalized to define a failure
surface in three-dimensional principal stress space. This surface would
take the form of a pyramid or cone, depending on whether the Intermediate
principal stress is assumed to have an effect. The pyramid or cone has to
be truncated in the absence of knowledge (or speculation) about behavior in
the tension-tension quadrants of the principal stress planes. For a para-
bolic Coulomb-Navier criterion, the simplest generalization of the failure
surface is a paraboloid, with the hydrostat line o = 02 - 03 as the axis
of revolution and truncation at limits of the tension-tension quadrants
where a, = UT, 02 = OT, 03 = oT . Within the domain where all stresses

are tensile, the simplest assumption is that the failure surface is a
pyramid with its apex at 01 = 02 = 03 m T
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The Griffith criterion and its derivatives

The Tresca and von Mises criteria are empirical relations, while the
Coulomb-Navier-Mohr criterion is based partly on physical reasoning. There
are other criteria which derive more directly from physical reasoning and
associated mathematical models, the most notable being the Griffith
criterion.

Starting from the observation that the bulk strength of brittle solids
is, in general, orders of magnitude lower than the theoretical strength
deduced from consideration of fnteratomic forces, Griffith postulated the
existence of minute cracks and associated stress concentrations. Drawing
upon the stress analysis given by Inglis for a two-dimensional elliptic
crack in an elastic plate, Griffith equated the change of potential energy
in the plate to the change of surface energy in the crack as the crack grew
in length. For a thin elliptic crack of length 2c:

7 ia 2 c2 )
8C E' = 3(4cy)

where E is Young's modulus for the plate, y is the specific surface energy
of the material and a is the applied stress (tensile and perpendicular to
the long axis of the crack) at which crack growth occurs. Thus

(_)1/2 Ey 1/2

for plane stress. For plane strain the corresponding relation is

o'- ~ ((-2) 1 / 2  "'.Ey 1/2

where v is Poisson's ratio. Numerically, the two versions are not much
different.* Much the same result is obtained by direct consideration of
theoretical material strength and stress concentration at the end of an
elliptic crack. From consideration of interatomic forces as a function of
separation, the theoretical tensile strength of the material a* is

= (EY) 1/2

where a is the atomic spacing in the unstrained state. From the Inglis
stress analysis for an elliptic crack with tip radius p, .he stress at the
crack tip act is

act = 2a ()1/2

where a is the applied stress in the plate. Equating act to a* for crack

growth:

* For a "penny-shaped" crack, a = [w/4(1-v2)]V2(Ey/c)1, which is also

not much different numerically.
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12(EY)1/2
- (P)4a 2

in which p is considered to be of the same order of magnitude as a for a
sharp crack. This version is identical to Griffith's plane stress relation
If

p = (8/r) a = 2.55 a.

It might be mentioned in passing that y can be reduced by adsorption of
certain surface active chemicals; this is known as the Rehbinder Effect or
the Joffe Effect.

Having derived a condition for crack growth under simple tension
normal to the crack axis, Griffith considered a biaxial stress field and
variable orientation of the crack relative to the principal directions of
stress, thus determining the critical crack orientation for initiation of
crack growth. This gave a failure criterion for material which contains
numerous cracks with random orientation:

""2 + .a
(0 o~2+ 4 aT (0+ 3) 0

" if 3a1 + a3 < 0

- and

! O~1 =O T ,

. if 3a + a3 > 0

where aT is the uniaxial tensile strength, and 01 > 03 (tension positive).
" One of the implications of this criterion is that

K -8.

Another point worth noting is that the Griffith criterion for 3a, + 03 < 0
is identical in mathematical form to the parabolic variant of the Coulomb-
Navier-Mohr criterion. It can be generalized in three dimensions as a
paraboloid, as already described for the parabolic Coulomb-Navier criterl-
on.

Analysis of the three-dimensional Griffith criterion (Murrell 1963.
Jaeger and Cook 1976) gives the relation for 30 + 03 < 0 as:

2 2 2

a?) + 0 01) + ('01 + 18 a (01 +09 +0 2  o 2 2- 3 ~ ) = 0o

This gives a ratio of unlaxial compressive strength ac to unlaxial ten-
sile strength UT that is different from the ratio for the two-dimensional

. criterion:
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It also allows some different predictions to be made for multlaxial stress
states, I.e. for the biaxial stress state when 02 = 0, for the conventional
triaxial test condition when a2 0 03, and for the triaxial state where a1
02 * 03"

In recent times investigators have proposed various modifications to
the older failure criteria in order to meet special requirements for rocks,
polymers, and other materials. For example, the McClintock-Walsh criterion
in rock mechanics comes from a modification of the Griffith analysis. It
is assumed that when flat cracks are closed by pressure, friction develops
between their faces. The resulting limit equation Is identical to the
Coulomb-Navier criterion if 20T is substituted for the cohesion c.

A more interesting criterion for present purposes Is a generalization
of the two-dimensional Griffith criterion made by Babel and Sines (1968),
who allowed the ellipticity of the idealized Inglis crack to vary so as to
represent straight cracks, circular holes, and all elliptic shapes in
between these limits. If o* is the theoretical strength of the material,
a and b are the major and minor semlaxes of the elliptic crack respective-
ly, and a/b - r, then consideration of stresses and critical ellipse orien-
tations gives the following relations:

(1 + 2r) 1 -o 3  = a*

when the major axis of the ellipse is normal to the direction of 01, and

0°1 2 01 )2 + 2r (a+
-2 + (r + 1).2 0* (1 2 o ) = 0

* for other orientations. The latter is obviously a parabolic relation of
the same mathematical form as the Griffith criterion and the parabolic
Coulomb-Navier-Mohr criterion. The transition between the regions of ap-
plicability for the first and second equations is given by

0 + r 03 = 0

Application of the first equation to the unlaxial tensile test (01 OT,
03 = 0) gives

I + 2r " T

and application of the second equation to the uniaxial compression test
gives

2r cTr +1) * 2"
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and the ratio of ac to OT is thus

4r(l + 2r)
a (r + 1)

A case that is of special interest is the one where the elliptic crack
becomes a circular (or cylindrical) hole, with r - 1. The ratio Oc/OT
then becomes 3, as can be shown more directly by analysis of a circular
hole in an elastic plate.

An important, and often overlooked, point about Griffith theory and
its derivatives is that these theories treat the onset of crack growth,
implicitly defining the start of crack growth as failure. In reality,
while the beginning of internal crack growth may represent the start of the
failure process, the applied stress needed to reach this stage may be far
below the short-term structural strength of a test specimen.

Orowan/Irwin modifications of Griffith theory

Griffith developed his theory primarily to explain the properties of
glass, and it was believed to be generally applicable to brittle solids.
However, If the strength equations which contain the surface energy y are
applied to metals or polymers the predicted strength is very much lower
than the actual strength of the real material. This can be explained by
plastic yielding at critical stress concentrations, which has the effect of
blunting the cracks.

In the late forties, Orowan and Irwin independently modified the
Griffith equation for strength by taking into account the energy dissipated
In localized plastic yielding, while at the same time retaining the elastic
analysis for the overall effect of a crack because the plastic yield zones
were considered small relative to the crack length. Orowan substituted for
the surface energy y a term which included a specific energy for plastic
working yp:

- + ) 21/2 Ey1/2

for plane stress. The approximation follows from the fact that yp >> y.
Irwin expressed the same idea by denoting the critical rate of change of
energy with crack length by a parameter Gc. Being an energy per unit
area, Gc has the dimensions of force per unit length, and It Is referred
to as a crack extension force. In the Irwin formulation

- (1)1/2 (Ec)1/2

for plane stress. Thus the Orowan and Irwin expressions are identical with

Gc = 2(y +y) 
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At this stage in the development of theoretical ideas it may seem that
the elegant simplicity of Griffith's original ideas has been clouded by
black magic, but as far as the failure criteria are concerned, the general
approach probably remains valid for fracture which is not perfectly
brittle.

FRACTURE MECHANICS AND FRACTURE TOUGHNESS

The name "fracture mechanics" has come to be used, somewhat restric-
tively, for study of the effect of cracks on the bulk strength of solid
materials. It derives from the theory of Griffith, and from the later
modifications of that theory by Irwin and Orowan. These theoretical ideas
have already been introduced as part of the discussion of failure criteria.

Analysis of crack extension

Griffith's original idea was that fracture occurred when a crack ex-
tended without limit because an increment of crack extension involved a
gain of surface energy Us less than the drop of potential energy of the
surrounding elastic material U

613 > 16U1

Irwin and Orowan Introduced the idea of energy dissipation by plastic
yielding at a crack tip (6W ) and the possibility of external work input
to the system (We), making the critical energy balance

6U + 6W > 6U + 6W
p e- s p

Since 6Wp >> 6U. and 6We is, for all practical purposes, zero, the
condition simplifies to

6U > 6W
p- p

The change of potential energy 6U as the crack extends by an increment
of length 6x can be equated to a unit force G multiplied by 6x:

6U G 6x

p

or

6U
G -

6x

This is Irwin's crack extension force, which was mentioned earlier. From
elastic analysis, the critical value Gc for unstable crack extension is

G C 0
2

c E
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for plane stress, and

G ffi (1 - 2)c 2

c E

for plane strain, where o is the applied stress at failure.

Analysis of the stress distribution around an idealized crack in an
elastic plate gives stress fields that are geometrically similar for
geometrically similar "cracks." The absolute magnitude of a given stress
component is proportional to the stress applied to the plate, o, and it is
also proportional to the square root of a characteristic linear dimension
of the crack, such as the half-length of the major axis c. Thus the
effects of geometric scale and stress level can be expressed by a stress
intensity factor K which contains the product a x /. For convenience, K
is defined as

=1/2
K o(Wc) 2

This is obviously another way of expressing the crack extension force
G. In terms of the critical values for failure, Kc and Gc:

K
2

Gc
c E

for plane stress, and

K2 (I -V
2 )

G c
c E

for plane strain.

Modes of displacement and crack propagation

In this summary of crack analyses the basic ideas have been developed
with reference to the opening or closing of a two-dimensional crack in a
plate that is under uniaxial tension or compression. However, in fracture
mechanics three distinct types of crack motion are recognized (Fig. 13).

Mode I - Mode Z Mode "

Figure 13. Displacement and crack propagation modes.
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Mode I is the simple separation considered for the foregoing discussion.
Mode II is in-plane shearing displacement, with opposite faces of a flat
crack sliding across each other in the direction of the crack's major
axis. Mode III involves twisting, and sliding of opposing crack faces in a
direction normal to both axes of the two-dimensional crack. As far as ma-
terials testing is concerned, interest centers on Mode I, and virtually all
test methods are designed to extend cracks according to Mode I. The critl-
cal value of the stress intensity factor for Mode I is denoted by KIc.

Toughness

Toughness is a poorly defined concept in engineering, but tradition-
ally it has been associated with the capacity of a material to absorb
energy before fracturing. Clearly energy alone, as represented by the area
under a stress/strain curve, is not an adequate measure of toughness, since
high strength and small failure strain could indicate a large energy for a
very brittle material. Perhaps the best way to define and measure tough-
ness is in terms of the ability to dissipate energy before fracturing. In
other words, toughness can be associated with the integral of stress multi-
plied by inelastic strain, or with total strain energy minus the recover-
able strain energy.

In fracture mechanics toughness, or fracture toughness, is defined as
the critical value of the Irwin parameter G, which is also known as a
crack extension force." G, or Gc, has the dimensions of energy per unit

area and it is, in fact, equal to the effective specific surface energy for
fracture, y, as pointed out earlier. However, with fine disregard for
language and logic, many practitioners of fracture mechanics refer to the
critical stress intensity factor Kc as the fracture toughness of a
material, even though Kc has dimensions which have no direct relation to
any reasonable definition of toughness.
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PART II. THE MECHANICAL PROPERTIES OF ICE

Ice tends to display rather complicated mechanical properties, largely
because it exists in nature at high homologous temperatures, commonly above
0.95, and almost always above 0.9. It behaves elastically when deformed at
high strain rates, or when loaded for very brief periods but, under sus-
tained loadings which induce deviatoric stresses and strains, ice behaves
inelastically, experiencing large irreversible strains. Under constant
stress ice creeps, the strain rate varying with time and strain. At any
given stage of the creep process, the relationship between strain-rate and
stress is strongly nonlinear, which means that the ice is viscoplastic
rather than linearly viscous.

Because ice properties are so sensitive to strain rate and tempera-
ture, strength varies greatly, depending on the prevailing conditions. The
general effects of multiaxial stress states, as represented by failure
criteria, also change drastically as strain-rate and temperature vary.

For non-saline ice, mechanical properties have to be specified as
functions of temperature, strain rate (or stress rate), porosity, grain
size, and grain structure. All of these variables remain important for sea
ice, and in addition there are the complications of salinity, variations of
brine volume with temperature, and geometry of the pore structure.

It is not yet possible to give a clear and complete description of the
mechanical properties of non-sallne ice, since more and better experimental
data are needed. For sea ice the situation is worse, because the material
is inherently more complicated than freshwater ice, and because experimen-
tal investigations still have a long way to go. In the following notes an
attempt is made to piece together a coherent story, not only by summarizing
experimental data, but also by deliberately ignoring some experimental
results which seem to be incorrect or misleading.

DEFORMATION AND FAILURE UNDER CONSTANT STRESS

OR CONSTANT STRAIN-RATE

Much of what is known about the rheology and strength of ice has been
derived from laboratory experiments. The two most common tests involve
unlaxial compression of a right circular cylinder, with either load or dis-
placement rate held constant. With constant load, which for small strains
approximates constant stress, the test is the classic creep test, which has
been favored by glaciologists interested in long-term flow under low devia-
toric stress. With constant displacement rate, which approximates constant

*strain rate, the test is the traditional strength test, which is important
in ice engineering problems involving rapid loading to failure. For com-

"* parable ranges of stress and strain-rate, the two tests ought to provide
essentially the same information, as discussed later.
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Constant stress tests

At high temperatures and relatively low stress (< 1 MPa) the creep of
non-saline fine-grained ice appears to be purely ductile, with no apparent
formation of internal microcracks. The general form of the creep curve,
plotted according to long-established conventions, is as shown in Figure
14. If good test data are available, more informative curves can be

obtained by plotting strain rate ; against either time t or strain c, as
indicated in Figure 15 for strains greater than 0.1%. A very interesting
fact then emerges: the failure strain for ductile yield, as indicated by
the point of minimum strain rate, is more or less constant at approximately
1% axial strain.

If the applied stress is relatively high, say greater than I MPa,

deformation occurs both by plastic straining of the ice and by internal

cracking. In fine-grained ice, cracks begin to form at small strains, and
the highest rate of crack formation occurs before the yield point near 1%
is reached. Although creep data for small strains are sparse, it appears
that there may be another strain rate minimum in the creep curve at very
small strains.

Typical Creep Curve //
9- 08 For Low Stress Test

8- 06 /

- 04 -=Constont

Complete Creep Curve
Arbitrary Designation of

Creep Stage,
5 - __ -- _ _| 1 I _ _ I I. Primary

0 0.1 02 03 04 05 06 0.7 0.8 secandary
M.rTertiory

4

3

I II
Point ot Inflection

Inistantaneous Elastic Strain (too small to plot)

0 i 2 3 4 5 6
t,Time (Dimensionless)

Figure 14. Idealized creep curve for constant stress test
on polycrystalline Ice.

42



10.

C

010 04 ' I"74
0 073

102

10
10 02 03 15 106 a. Log strain rate is

t, Elapsed Time (arbitrary units) plotted against log time.

1046

E 1%

o
9mi b. Log strain rate is plotted

00.1 1.0 1 0 for polycrystalline ice that Is
E, Total Strain (M) Initially isotropic.

Constant strain-rate tests

Constan rate tests are usually limited to fairly high applied strain
rates > 10 s - ) for practical reasons. The resulting stress/strain
curves for non-sallne fine-grained Ice often show two yield points (Fig.
16): an Initial yield point associated with the onset of Internal crack-
Ing, and a secondary yield point associated with final ductile failure.
The relative magnitudes of stress at the two yield points vary a good deal,
and at very high strain rates the Initial yield becomes dominant. As long
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Figure 16. Idealized stress/strain curve for constant
strain-rate test on fine-grained ice.

as there is a secondary yield, it occurs at axial strains close to 1%. By
contrast, the strain at the initial yield point increases with increasing
strain rate.

Columnar-grained ice with relatively large grains seems to behave
differently than fine-grained isotropic ice. Yielding usually occurs at
small strains, and no secondary yield point appears on the stress/strain
curves. In metals, a stress/strain curve with two yield points is con-
sidered to represent ductile failure, and for given conditions it is
regarded as characteristic of fine-grained material. The same polycrystal-
line metal with larger grain size may, under the same conditions, suffer
brittle fracture, giving a stress/strain curve which terminates at the
first yield point.

Comparison of data from constant stress tests
and constant strain-rate tests

The correspondence between creep curves and stress/strain curves has

been discussed in detail elsewhere (Mellor and Cole 1982, 1983). For

present purposes it Is sufficient to note that a strain-rate minimum on a
creep curve corresponds to a peak on a stress/strain curve. To a first
approximation, the stress/strain-rate relations given by strain-rate minima
in creep are the same as stress/strain-rate relations given by peaks on
stress/strain curves. The significance of this for sea ice studies is that
the very sparse data from creep tests can be supplemented by "creep data"
derived from "strength tests."
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MEASUREMENT OF THE MECHANICAL PROPERTIES OF ICE

Mechanical tests on ice are Intended to provide information on the
strength of the material (failure criteria), and on the stress/strain/time

* relations (constitutive relations). In principle and in practice, It Is 5
very difficult to design and execute truly valid tests. The full ranges of
ideal tests required by a theoretical mechanician are not practically 1
feasible, especially for anisotropic material, but simple tests which suf- >

*fIce for some other engineering materials are not always adequate for Ice.
Thus the real aim is to devise tests which are both valid and manageable,
and this demands a thorough understanding of both the behavior of ice, and

* the detailed mechanics of the test. The following notes do not describe
tests in detail, nor do they give recommendations on test procedures. The
intention Is to Indicate where caution may be called for, and where de-
tailed information can be found. Some test guidelines have been drawn up
and published by an international group (Schwarz et al. 1981), but these
may change as techniques and equipment improve.

Uniaxial compression

Uniaxial compression is a much-maligned test which remains the most
useful one for engineering purposes. Although apparently very simple, It
is difficult to do well at high strain rates because of stress concentra-
tions and stress field perturbations at and near the end planes, where load
Is applied. When a specimen in the form of a right circular cylinder is

* used , direct contact between the ice and steel platens is usually unsatis-
factory for strain rates approaching and exceeding 1i-3 s-, even when the
specimen end planes are machined flat and square to close tolerances.
Interface cushions of thin "crushable" material (such as paper or thin
cardboard) may help, but cushions of "extrudable" material (such as rubber
or soft plastic) are undesirable because they can introduce tensile radial
stresses.

For simple field tests, special end caps filled with radially confined
compliant material are useful (Haynes and Mellor 1977). For high-quality

* laboratory tests, bonded end caps are satisfactory (Mellor and Cole 1982),
* and if tests are to be run to large strains (several percent axial) a care-

fully designed dumbbell specimen with bonded end caps gives good results
* (details to be published later).

Measurements of axial strain are best made within the central section
- . of the specimen itself for small strains (< 1%), but for large strains

demountable displacement transducers have to be attached to the end caps to
avoid undue disturbance of the transducers' attachments. So far, bonded
strain gages have not been used successfully, but with some development
effort this situation could change, especially on large specimens where

some surface disturbance can be tolerated.

Radial or circumferential straiii should be measured at the mid-section '
of the specimen, noting that the mid-section moves relative to the loading
platens and the end caps as the specimen strains axially. If the radial*
strain transducer is In contact with the Ice, Its contact points must be
free to travel axially with the ice. If non-contact proximity gauges are
used, some axial displacement between the pickup and the targets can be
tolerated.
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Uniaxial tension

The only reliable way to measure the uniaxial tensile strength of ice
is by direct application of uniaxial stress in the classic test. Tests
depending on flexure, or on diametral compression of discs, cylinders or
annuli, are indirect, in that the stress field has to be calculated from
elastic theory, and a failure criterion ha- to be assumed. In other words,
in an indirect test it is necessary to assume mechanical properties in
order to measure mechanical properties.

In making a uniaxial tensile test on ice, the main difficulty is
gripping the specimen and straining it while maintaining true unlaxial
stress in the test section. The specimen is attached to end caps by mech-
anical grips or by adfreeze bonding. Whatever method is used, it will cer-
tainly create a triaxial stress field near the end caps, and if the speci-
men is a simple right circular cylinder it is likely to fracture near the
end caps, in a stress field which is not uniaxial. Thus it is necessry to
use dumbbell specimens for high quality laboratory tests. The fillet
radius of a dumbbell specimen controls the stress concentration in the
transition zone. If D is the diameter of the specimen "neck," a fillet
radius of 8D gives a stress concentration factor of 1.02, and a fillet
radius of 1.4D gives a factor of 1.05. Photoelastic model tests and prac-
tical experience indicates that a fillet radius of 2D is satisfactory for
ice (Hawkes and Mellor 1972). Precise dimensional tolerances for the
specimen and the pulling device are important, and avoidance of eccentric-
ity or twist In the pulling systems is essential.

The considerations relating to measurement of axial and radial strain
are essentially the same as those for uniaxial compression.

Shear tests

Shearing deformation is obviously very important. However, direct
shear tests tend to be poorly understood, and in many cases simplistic and
ill-conceived.

In plane stress or plane strain, pure shear exists when the In-plane
principal stresses are equal in magnitude and opposite in sign. It is not
easy to make a test which gives these conditions.

The usual experimental approach Is to impose so-called "simple shear,"
using a prismatic specimen. A slab or block of the test material is de-
formed in such a way that its longitudinal cross section is changed from a
square to a rhombus, or from a rectangle to a parallelogram, with zero
normal stress on the surfaces which are subject to traction. This can be
done with a suitably designed parallelogram frame, but there will be some

0perturbation of the stress field near the surfaces of the shearing plates.
One research group has sheared ice by means of parallel plates which are
maintained at constant separation by steel balls running in vee-grooves.

* This is suitable for shearing a deck of cards, but not an Isotropic defor-
* mable solid.

Direct shear tests are often intended to measure the effect of normal

stress on shear res:3tance. The general idea Is to distort a specimen as
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for "simple shear," while applying normal stress to the traction surfaces.
The traditional shear box used in soil mechanics is intended for this pur-
pose, but it perturbs the stress field and forces failure along a particu-
lar plane. Similarly, tests which use a segmented steel cylinder to fall a
cylindrical specimen in double shear are unacceptable.

A more appealing method for applying shear deformation directly is

torsion of a hollow cylinder, with or without axial forces or surface
pressures. In practice, torsion tests on ice are very difficult.

It is not necessary to apply surface tractions or to induce direct
shear in order to define devlatoric stress/strain relations and failure

criteria. Tests which induce devlatoric strains by controlling principal

stresses can provide the required information.

Beam flexure tests

Beam flexure is used to measure the strength of ice, and the elastic

modulus. Tests are made in the laboratory on small beams, and field tests
are made on large beams (often in situ), using either simple beams (in
3-point or 4-point bending) or cantilevers. Since it is usually assume4

that the ice is linearly elastic, with equal moduli in tension and

* compression, the tests should be of very short duration (of the .rder of I
*" s or less). For beams tested in situ, there are often steep temperature

gradients within the beam, and buoyancy effects may be important. The ends

of in situ beams sawn in an ice sheet are not rigidly encastre; fiexure of
the beam can flex the adjacent ice to some extent. Thus the proportions of
the beam are important, and stress-concentrating corners at the beaim root
have to be considered. The IAHR recommendations suggest that beam length
should be 7 to 10 times the ice thickness, and beam width should be I to 2
times the ice thickness (Schwarz et al. 1981).

A beam breaks when the ice fails in tension at the con,,ex surface, and

the resulting crack propagates through the thickness of the beam. The
critical tensile stress is first reached at the surface, and the crack
propagates through ice which has a stress gradient. The calculated value

of this tensile stress is usually significantly different from the unlaxial
tensile strength of bulk material, not only for Ice but for most non-,ietal-
lic materials. Thus it is termed the "flexural strength" or "modulus of
rupture" to avoid confusion.

The elastic assumption is justifiable for high strain rates and low

temperatures, but it is completely unrealistic for low strain rates and
high temperatures. Thus beam flexure tests cannot really be used to deter-
mine variations of tensile strength with strain rate or temperature.

Diametral compression tests

When a solid cylinder or a disc of elastic material is squeezed from
opposite ends of a diameter, the center section of the dlametral plane
experiences a tensile principal stress at right angles to the loading
direction, and a compressive principal stress parallel to the loading
direction. The magnitude of the compressive stress is three times that of
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the tensile stress. If contact stresses at the loading platens are proper-

ly controlled, a disc or cylinder of brittle material will fail by

splitting, with the crack initiating at the center of the specimen.

For a "Griffith type" material, in which the ratio of uniaxial com-

pressive strength cc to uniaxial tensile strength OT is 8 or greater,

the tensile stress is equal to the uniaxial tensile strength, even though

failure occurs in a blaxial stress field (see section on Griffith theory).
However, in ice Oc/OT < 8, and the critical stress induced by elastic

compression of a disc or cylinder is not equal to the unlaxial tensile

strength. The calculated tensile failure stress is 2P/rdt, where P is
applied force at failure, d is disc diameter, and t is disc thickness.
This stress is much smaller than OT, and the test result probably has to

be interpreted in terms of the failure envelope for a biaxial stress field,

with a1 = - 03/3, and 02 = 0.

The other diametral compression test which has been applied to ice

involves diametral compression of an annulus. This is a rather complicated
test, and as far as is now known it does not give a useful measure of

tensile strength for ice or any other material (Mellor and Hawkes 1971).

Conventional triaxial tests

The test which is usually known as a triaxial test is similar to a
uniaxial compression test, but with radial pressure applied to the specimen

by means of gas or liquid in a confining cylinder. The stress state is
triaxial, but 02 -03. The test is usually performed as a "strength test,"

with a, increasing at approximately constant rate, and frequently with some

confusion about the time relations for c2 and 03. The test can also be

carried out as a constant stress creep test.

The triaxial test has not been used to any great extent in ice test-
ing, but it is potentially an important test. New equipment and techniques
are being developed at CRREL.

Mixed tension/compresslon trIaxial tests

An interesting variant of the conventional triaxial test is a test in

which cell pressure alone is used, but the test specimen has a dumbbell

shape. Pressure acting axially on the flared ends of the specimen Induces
axial tension, while at the same time the pressure exerts a radial

compressive stress. Thus the specimen fails with a, tensile and 02,03
compressive, giving a point on the failure envelope for the

tenslon-compression quadrants of principal stress space. The ratio of 01

to 2,03 can be varied by changing either the neck diameter of the

specimen, or the diameter of the end caps. A pressure cell for making
tests of this kind was developed by I. Hawkes and D. Garfield at CRREL, and
tests were made by F.D. Haynes (1973).

Polyaxial compression tests

In a true triaxial, or polyaxial, test 01 * 02 * 03 * 0. The test

specimen has to be a cube, and all faces have to be free of surface
tractions. For tests on a "creepy" material such as ice, the loading
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actuators which apply a,, 02 and 03 all have to be programmable with
respect to time.

The only known polyaxial tests on ice are those done by H1usler
(198t). Load is applied to each face of the specimen by a "brush" platen,
which consists of a cluster of slender metal columns, each free to deflect
sideways independently of its neighbors. As there is no access to any of
the surfaces, strains are obtained directly from platen displacements.

Fracture toughness tests

Although there are three distinct modes of displacement for crack
propagation (see section on Fracture Mechanics), only the tensile Mode I is
used in testing. The general procedure is to propagate a crack in a
tensile stress field, and sometimes to arrest the crack.

A form of test that has been used widely for ice involves four-point
bending of a beam into which a "crack" has been cut on the tension side.
Another popular test is one based on the so-called Compact Tension
Specimen. This is a block with a sawcut, and it is pulled, or torn,
apart. For crack-arrest measurements a slender wedge is forced into a
sawcut, propagating a crack which eventually stops as the stress drops
back, to a low level. All of these tests assume linear elastic response in
the test material, and it seems likely that they could give misleading
results for low strain rates and high temperatures.

THE ELASTIC MODULI OF ICE

Since ice is markedly viscoelastic at the temperatures and strain
rates which have often been used in conventional strength tests (say -50 to
-10°C and 10-4 to 10-3 s1), a conventional stress/strain curve does
not give an accurate measure of the elastic modulus. For example, a unl-
axial test under constant strain rate, either in compression or tension, is
likely to yield a stress/strain curve which is "convex up," i.e. do/de
decreases as a and c increase (Fig. 17). Thus the "tangent modulus," given
by do/dE at some arbitrary point on the curve, may have little relation to
the true Young's modulus. Similarly the overall secant modulus, represent-
ing the average slope of the stress/straln curve from the origin to the
peak stress, may be very different from the true Young's modulus. In

*principle, the initial tangent modulusi (do/dc)C.o, should be equal to
Young's modulus, but with typical test data the initial tangent modulus
cannot be read accurately from a stress/strain curve. In fact, unless
strain measurements are made on the test specimen itself (instead of across
the platens of the testing machine), the initial tangent modulus cannot be
measured at all. However, with good test data, do/dc can be calculated as
a function of a or c, and when do/dc Is plotted against a or c the zero
intercept gives a value which ought to approximate Young's modulus.

A much simpler way to study Young's modulus and its variation with
temperature, salinity, air content and so forth is to use high frequency
vibrational methods. These may involve the propagation of small-amplitude
waves or pulses in laboratory specimens or large natural ice masses, or
they may involve flexural or torsional oscillations of beams or cylinders.
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For polycrystalline Ice of low porosity (density p + 0.917 Mg/m3),
high frequency dynamic measurements of Young's modulus E give values of
approximately 9.0 to 9.5 GPa in the temperature range -5* to -10%C. Care-
ful measurements of the Initial tangent modulus for uniaxial compression
tests have given values very close to the dynamic values of E (9-10 G a)
for Ice of similar type (e.g. Gold 1958, Hawkes and Mellor 1972, Sinha 1978
a,b). Much higher values of initial tangent modulus (up to 25 G a) have
been reported by Haynes (1978), but so far there Is no Independent confir-
mation (the highest values exceed theoretical values for a perfect monocry-
sial).

Temperature does not have a strong effect on the true Young's modulus
of non-sallne Ice. As temperature decreases, E Increases nonlinearly, as
Indicated in Figure 18.

The value of E does vary significantly with porosity in non-saline
Ice, and we would expect a similar effect In sea Ice. The porosity of sea
Ice derives from two sources: 1) the air bubbles, which do not vary much
In volume as temperature changes, and 2) the brine cells, which adjust
their volume so as to preserve phase equilibrium as temperature changes.
In most studies on sea Ice, mechanical properties have been related to
brine volume (as calculated from the salinity and the temperature), but air
volume has not been measured in many cases. Thus we have to use "brine
porosity" instead of total porosity In examining most data sets.

Figure 19 Is a plot of Young's modulus E against porosity n. A data
band Is given for cold, non-sallne Ice, in which the voids contain only
air. Over this band are located data envelopes for tests on small saline
specimens. The results of Langleben and Pounder (1963), and also of Abele
and Frankenstein (1967), were obtained by propagation of high frequency
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Figure 18. Summary of Young's modulus data for
non-saline ice and snow (for source details, see
Mellor 1975).

pulses; those of Tabata (1958) were obtained by flexural vibration of small

beams. These results for sea ice agree quite closely with the results for

non-saline ice, in spite of the fact that some of the pore volume is occu-
pied by water. The tendency for the sea ice values to decrease more rapid-
ly than the fresh ice ones can probably be explained by the fact that
temperature is an implicit variable for the sea ice. The range of n could
represent a temperature change of 200 C, and this could change E for the ice
matrix by 10% or so.

The results of Kohnen (1972) were obtained from seismic wave data for
broad expanses of sea ice. Those of Brown (1963), and of Anderson (1958),
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were also obtained from field measurements, but they involved flexural

waves in the Ice sheet. The data of Brown and Anderson, and perhaps those
of Kohnen, appear to represent something other than the true Young's modu-

lus of sea ice, and where flexure has been involved in the testing it Is

not difficult to find an explanation.

A sheet of sea ice Is not a homogeneous elastic slab. It is often
subject to steep temperature gradients, with the top cold and of low poros-
ity, and the bottom warm and of high porosity. If flexure of such a slab
Is treated by simple elastic beam theory, the deduced value for the elastic
modulus will not be Young's modulus, but some kind of "effective" flexural
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modulus. For very low values of ice porosity, which prevail at low tem-
peratures and/or low salinities, the flexural modulus may be a good ap-
proximation to Young's modulus. However, at high porosities, which are
produced by high salinity and high temperature, the flexure will not be a
purely elastic process, and the flexural modulus will be far lower than
Young's modulus.

Values of Poisson's ratio v have not been studied systematically for
sea ice. Weeks and Assur (1967) speculate that v will decrease as tempera-
ture and brine volume decrease, adducing Russian seismic data In support.
This speculation Is a bit surprising at first sight, since one would expect
the opposite trend if the pores were air-filled (see Fig. 20, which shows
that v for non-saline ice decreases as density decreases and porosity in-
creases). However, with water-filled pores It seems quite possible for V
to Increase with porosity, as can be seen from the following argument.
Poisson's ratio v can be expressed in terms of Young's modulus E and the
bulk modulus K as

V 3K E=-(3-E/K)

Since the bulk modulus of water is not greatly lower than that of ice, a
small increase In the volume of water-filled pores will not have much
effect on the overall value of K. Thus the variation of v with porosity n
will be controlled largely by the corresponding variation of E. Since E
decreases as n increases, v would thus increase as n Increases. However,
one would not expect much variation of v. The value of v for non-saline
ice of very low porosity Is about 0.33 + 0.03, and variation with porosity
In sea ice is likely to be within the li1mits of uncertainty for the pure
ice value.

The bulk modulus K and the shear modulus G have not received much
explicit attention in sea ice studies, but If it Is accepted that v will
not vary much, then these constants can be given as simple multiples of E.
Taking v 1/3:

E
K2= 1.0 E

G= E 0.375 E2 (1+v)

* "EFFECTIVE" MODULI FOR LOW STRAIN RATES

In Ice mechanics, elastic analysis Is often applied In problems that
* do not Involve purely elastic processes. Pseudo-elastic constants are

det,-rmined from quasi-static tests, and from field observations of low-rate
deformations. It can be very confusing when these constants are regarded
as true elastic moduli, but there Is no getting away from the fact that the
numbers are useful for many practical purposes.

If no rate or temperature restrictions are placed on tests and proces-
ses, then "effective moduli" cease to have much relevance. However, If the
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Figure 21. Summary of data for effective modulus E'
plotted against porosity.
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Figure 22. Summary of data for effective modulus Et plotted
against strain rate.

consideration is limited to relatively high strain rates, say of the order
of 10-4 S-1 or greater at temperatures below -100 C, then elastic analysis
Is perfectly reasonable and appropriate effective moduli can be used.

Figure 21 gives an Impression of the approximate magnitude of the
effective modulus E' as porosity n varies. The data by Vaudrey (1977) seem
to be reasonable working values, and they are of comparable magnitude to
the values obtained in a different way by Anderson and Brown (see Fig. 19).

54



Effective moduli should always be used with great caution, recognizing
that E' for any given specimen can vary considerably as temperature and/or
strain rate vary, and even the way it Is defined can vary at the discretion
of the investigator. Figure 22 shows how E' varies with strain rate at
various temperatures, using data for freshwater ice in the absence of
information for saline ice. At low temperatures and high strain rates, E'
is approximately equal to the true Young's modulus E, but at low strain
rates and/or relatively high temperatures, E' may be only 25% to 30% of E.
Lalney and Tinawl (1981) showed similar behavior in ice of 596o salinity,
presenting their values of E' for beam flexure as functions of stress rate
(Fig. 23).

40*
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a. -20--- '
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Figure 23. Variation of E' with stress rate
and temperature (Lainey and Tinawi 1981).
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Figure 24. Variation of El with frequency, as deduced from strain rate data
(after Sinha 1978a).
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Sinha (1981c) has shown that the apparent value of the effective modu-
lus can vary with the characteristics of the loading and measuring system.
Of particular concern is the discrepancy between the apparent strain rate,
as sensed across the specimen and its end contacts, and the true strain
rate within the specimen. For rapid tests, the average stress rate may
give a more reliable estimate of true strain rate, assuming linear elastic
response.

The variation of E' with strain rate e means that there will also be
variation of E' with frequency f in the case of oscillation or vibration.
Figure 24 indicates the rate of variation deduced by Sinha (1978a) from the
straln-rate data for freshwater ice summ-.Ized in Figure 22.

It was mentioned earlier that the true Young's modulus E for fresh-water ice is not very sensitive to temperature, but the same general state-

ment cannot be made for the effective modulus E', even in freshwater ice.
Figure 25, from Sinha (1978a), shows how E' for columnar-grained ice varies
with temperature for various load durations and two stress levels. The
values of E' in this figure are normalized with respect to the modulus E
for very, rapid loading. Absolute values of E', obtained from beam tests on
ice of 50/oo salinity, are indicated in Figure 26, which is based on
data by Lainey and Tinawi (1981). In the case of saline ice, it has to be

" kept in mind that a change of temperature implies a change of porosity if
the ice is of fixed salinity.

When "effective" values of Young's modulus are employed, we need also
"effective" values of Poisson's ratio, v'. Effective values of v' are only
just beginning to enter the literature, but some deductions can be made.
As material response becomes more ductile, the usual trend is for V' to
increase up to a limit of 1/2, which represents incompressible flow, with
E'/K tending to zero. When all the pores of the ice are filled with water,
there is no reason for the bulk modulus K to vary much with porosity,
temperature, or strain rate, and for a first approximation it can be

1.0

0.8

0.6-

___- I MPo
/ ---. 2 MPa

04
0 -10 -20 -30 -40 -50

Temperature (C)

Figure 25. Variation of E' with temperature for
different stress levels and load durations (Sinha
1978a).
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assumed equal to the true Young's modulus for zero porosity, E0 . Thus
the effective Poisson's ratio for Isotropic material can be expressed as:

1 k 1 E'
2 6E

0

which gives a systematic variation between the limits 1/3 and 1/2. If the
ice is anisotropic, more extreme values of v' for particular directions are
possible.

The expected general trend is confirmed by data from beam flexure
tests made on saline ice by Murat and Lainey (1982). Values of v' de-
creased from a value of approximately 0.5 as strain rate and stress rate
increased. At the highest test rates (0.6 MPa/s, and up to 1.6 x 10- 4

s-1), v' was between 0.35 and 0.4. Mean values for high rate testing de-
creased with decreasing temperature, from about 0.4 at -50C to 0.37 at -300
and -40*C. This agrees with the prediction of Weeks and Assur (1967) that
was discussed earlier in the context of "true" Poisson's ratio.

UNIAXIAL COMPRESSIVE STRENGTH

Uniaxial compressive strength ac is a very impor-ant parameter which
appears easy to measure. In fact, accurate measurement of cc is very
difficult for highly brittle materials. When a simple right circular
cylinder is pressed between platens, the stress field is triaxIal rather
than unlaxial near the end planes, and stress concentrations develop at the
platen/specImen interface. This means that many of the reported values of
cc for high loading rates and/or low temperatures are probably wrong.

In assessing the unlaxIal compressive strength of ice, the main varl-
" ables are:
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(1) Ice type (grain structure and texture, porosity, salinity, solid

inclusions)

(2) Strain rate (or, with reservations, stress rate)

(3) Temperature (which automatically varies with porosity in saline
Ice).

For a start, we consider the strength of non-saline ice.

In the present context, unlaxial compressive strength will be regarded
as the maximum stress that can be developed at a specified strain rate.
Studies on fine-grained isotropic freshwater Ice (Mellor and Cole 1982,
1983) have shown that the minimum strain rate developed in a constant

stress creep test gives essentially the same limiting relationship between
stress and strain rate as the constant strain rate test. We can therefore
combine data from creep tests and strength tests to define the relationship
between strength and strain-rate over a wide range. Figure 27 shows that
at low strain rates, say I0-7 to 10- 5 s -1, strength increases with about
the one-third power of strain rate, while at higher rates, say 10- 5 to 10- 3

s strength appears to Increase with a one-fourth, or smaller, power of
strain rate. This relation Is the Inverse of the glaciologists' "flow
law," which requires minimum creep rate to be proportional to the stress
raised to a power of approximately 3.

Figure 28 gives some data for saline Ice by Wang (1979a). These
results were selected from Wang's paper because they fit the pattern of an
approximate fourth-power relation between strain rate and stress. More
detailed results by Wang (1979b) provide ample confirmation of the general
trend, although the author fits rather complicated trend lines to the data
(Fig. 29, 30, 31). Some data by Schwarz (1971) are shown in Figure 32.
Data for multi-year sea ice of low salinity are just beginning to appear in
the open literature (Cox et al., In press). Values of cc scatter widely
because of grea:t variability in the ice structure, but variations of a
with strain rate are not Inconsistent with the power relation just men-
tioned (Fig. 33).

10- 92
1. Howkes 8 MellIor (1972 )-7*C, PO=0.899Mg/mn

3

2. Mellor a Cole (1981)-5*C, P~0.9l7 Mg/rn3  
3

3. Gold (1977)-100 C, p=O.9Mg/m 3 (various ice types)

*"-Constant
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Figure 27. Maximum yield stress as a function of strain rate for nonsaline
Ice.
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Figure 28. Uniaxial compressive strength Figure 29. Variation of c
of sea ice as a function of strain rate with strain rate in granular
(after Wang 1979a). sea Ice at -100C. Data are
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size (after Wang 1979b).
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*Figure 30. Variation of cc with strain Figure 31. Variation of cc with
rate In uinoriented columnar sea ice at strain rate in col irnar sea ice at

--- 10*C. Samples were taken from trie upper -10"C. The three oaca sets show the
part of the Ice sheet (after Wang 1979b). effect of crystal orientation, The

lowest values of cc are measured
when the c-axes are at 450 to the
direction of the major principal
stress. Grain size for these speci-
mens was 11 mm (after Wang 1979b).
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Figure 33. Values of cc for multi-year sea Ice at strain rates of 10-5 and 10-3 S-
and at temperatures of -5*C and -20*C. The wide scatter Is produced by great varn-

* ability In grain and pore structures (Cox et al., in press).

60



For strain rates greater than 10- 3 s- 1 many investigators have found

that strength decreases as strain rate increases, and this is widely re-
garded as characteristic of brittle fracture. Such a trend would be in
keeping with the ideas of fracture mechanics, but in some cases the effect

may be caused by inadequacies in specimen preparation and imperfections in
test technique. Present indications are that it will be necessary to use

carefully designed, and precisely machined, dumbbell specimens in order to

get valid test results at very high strain rates. For these reasons, the
high rate data recorded in the literature will be deliberately disregarded
in this survey.

The next variable for consideration is temperature, and we can first

consider how non-saline ice responds.

At very low strain rates, where ice fails by creep rupture, it has
long been the practice among glaciologists to characterize the effect of

temperature on stress/strain-rate relations by an Arrhenius equation, with
an activation energy of approximately 70 kJ/mole. Such a relation is

definitely not valid above -10*C, and the complete empirical relation
derived from experiments (e.g. Fig. 34) should be used to deduce how
rupture stress varies with temperature. If creep tests give a relationship

between applied stress and minimum strain rate in the form

An
=A f(0)

mi n

*I0 - I I I I

*i - -

* 010 7

E
E \

- -

ON12 bar

* ' I I I I

0.6 38 40 4.2 4.4 46 4.8 5.oxi0 Figure 34. Empirical relation be-
I/T(°K) tween minimum strain rate and tem-

0 -10 -20 -30 -40 -50 -60 -70 perature for high-stress creep
Temperature(*C) (after Mellor and Testa 1969).
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where 6 is temperature, then the yield stress ought to vary with tempera-
ture according to a relation of the form

Cmax = {/nA f() }tn

In Figure 35, creep data have been used in this way to show how strength
varies with temperature at low strain rates.

At very high strain rates, we would not expect much variation of
strength with temperature, since the loading process is almost purely
elastic. In the limit, strength might vary with temperature in much the
same way as the true Young's modulus (Fig. 35).

In Figure 35 the variation of strength is examined by normalizing all

strength values with respect to the value for -10*C. Taking curves 1 and 4
as the limits for high and low strain rates separately, the curves for
typical testing rates might be expected to fall In between, which does seem
to be the case.

4.0-/

I

/

30 /

2 0 -7

0 -10 -20 -30 -40 -50 -60

S(*C)

Figure 35. Compilation of temperature relationships. All the
stress values are normalized with respect to the value for -10*C.
1) Variation of Young's modulus with temperature. 2a) Unlaxial
tensile strength according to data by D. Carter (1970). 2b)
Unlaxial tensile strength according to data by F.D. Haynes
(1978). 3a) Unlaxial compressive strength according to data by
D. Carter (1970). 3b) Unlaxial compressive strength according
to data by F.D. Haynes (1978). 4) Ductile yield stress deduced
from creep data by M. Mellor and R. Testa (1969). 5) Pressure
for phase transition from Ice Ih to water under Isothermal
hydrostatic compression.
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Before leaving the subject of freshwater ice, it might be mentioned
that the temperature study by Haynes (1978) shows extremely high compres-
sive strength values for high strain rates (>10 - 3 s-1) and low temperatures
(-100 to -55*C). Virtually all values for this low temperature range
exceeded 10 MPa, and some approached 60 MPa.

Temperature effects for saline ice include the effect of temperature
on the solid ice component, as just discussed, but they also include the
effect of porosity variations. All other things being equal, one might
expect the strength of saline ice to increase more rapidly with decreasing
temperature for the range where porosity is decreasing with temperature.
Some data by Schwarz and Weeks (1971, 1977) seem to support this idea
(Fig. 36).

Actually, temperature has not received a great deal of attention as a
primary variable for saline ice. The major emphasis has been on brine
volume, which will be discussed next.

The effect of porosity on the compressive strength of non-saline ice
can be seen by examining the upper limits of the appropriate data band in
Figure 37. As density decreases from 0.9 to 0.8 Mg/m3, i.e. as porosity
increases from 1.9% to 12.8%, the uniaxial compressive strength decreases
by a factor of approximately 0.6.

In saline ice, where much of the pore volume is occupied by brine,
porosity varies as temperature varies, and thus there is no easy way to
separate the effects of temperature and porosity. Porosity is usually
expressed as "brine volume," the volume of air rarely being known. There
is a further complication in that most experimenters plot strength not
against brine volume, but against the square root of brine volume. There
was a rational basis for this practice in some studies, since the planar
porosity of ice can be related to brine volume by assuming appropriate geo-
metric models of pore structure. However, when the structure of the ice is
uncertain, when the orientation of the pore structure to the principal
stresses and the failure surfaces is variable, and when fracture mechanisms

1
0 -

05r-

IFigure 36. Variation of uniaxial
- compressive strength with temper--10 -20

T.mp tur 'C) ature (data from Schwarz 1971).
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are not fully understood, there is no good reason for using the square root
of brine volume as a primary variable. In this respect, the present review
breaks with established tradition.

Figure 38 gives a data band representing what are usually thought to
be Peyton's (1966) values of rate-adjusted compressive strength as a func-
tion of brine volume (see Schwarz and Weeks 1977, Weeks and Assur 1967,
Weeks and Assur 1969). Actually there is real doubt as to what these
numbers mean. Peyton used the strange term "strate," giving it the units
of a stress and the interpretation of a rate-adjusted strength. However,
"strate" does not appear to have the dimensions of a stress according to
his definition; the absolute values are extremely low, and they are incon-
sistent with "measured strength" values shown in another graph. The brine
volume values are also surprising, reaching porosities of about 40%, which
is approximately the porosity of dry sand, crushed stone, or snow of dens-
ity 0.55 Mg/m3.

Less ambiguous data for the uniaxial compressive strength of saline
Ice have been given by Vaudrey (1977). Figure 39 gives data bands repre-

pi senting his results replotted against brine porosity instead of the square
root of brine volume. The general magnitude of strength values measured by
Frederking and Timco (1981) is also indicated In Figure 39.

UNIAXIAL TENSILE STRENGTH

The uniaxial tensile strength of ice, OT, is of both practical and
theoretical importance. There Is only one way to measure unlaxial tensile
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strength as a bulk property of the material, and that is by inducing fail-
ure in a fully determined uniaxial tensile stress field. The most reliable
way to achieve this Is to apply uniaxial tension to a dumbbell specimen
which has been carefully designed, precisely machined, and mounted to close
dimensional tolerances.

Indirect tension tests, which have to be Interpreted by assuming a
constitutive relation and a failure criterion, do not measure the uniaxial
tensile strength of ice. In particular, exhaustive studies have shown that
the ring tensile test is invalid for most real materials, and certainly for
Ice. The Brazil test, which involves diametral compression of a disc or
cylinder, gives a direct measure of OT for "Griffith materials" when con-
tact stresses are properly controlled, but for ice at typical loading rates
it does not measure the uniaxial tensile strength (failure occurs in a
biaxial stress field, with a, = -3a3). Beam tests do not measure the uni-
axial tensile strength of ice, but they are widely used and do constitute a
rough analogue for typical plate fracture situations.

We can begin by looking at the behavior of non-saline ice under
tension.

At very low strain rates, where deformation occurs mainly by flow and
recrystallization, there is no reason to expect a significant difference
between the compressive strength cc and the tensile strength aT. How-
ever, at high rates of loading, where brittle fracture occurs, OT Is

, . expected to be much lower than cc . Clearly there has to be a transition
somewhere, and in Figure 40.1t appears that the bifurcation between the
cc and aT curves occurs at c - 10 6 s-1 for non-saline ice at -7°C.
Once the conditions for brittle, or quasi-brittle, fracture have been
established, there appears to be little change of OT as strain rate
increases, although cc continues to increase with c.

If aT is insensitive to strain rate in the brittle range, we would
expect a corresponding lack of sensitivity to variations in temperature.
This expectation is borne out by the limited data for the tensile strength
of non-saline ice (see Fig. 41).

The variation of OT with porosity in non-saline ice is indicated in
Figure 37. As density decreases from 0.9 to 0.8 Mg/m 3 , i~e. as porosity
increases from 1.9% to 12.8%, OT decreases by a factor of approximately
0.8. Thus it appears that 0T is less sensitive to porosity than is 0c
within the range that is of interest here.
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Figure 40. Effect of strain rate on cc and oT for non-saline Icc (Hawkes
and Mellor 1972).
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It seems that there have not been many uniaxial tensile tests on
saline ice. Peyton (1966) made tension tests, but the form of the report
is such that the results are virtually unusable. This leaves only the work
of Dykins (1970).

From consideration of the tensile strength of non-saline ice, which is
relatively insensitive to strain rate, temperature, and porosity in the
brittle range, we might guess that sea ice would also have relatively con-
stant tensile strength. Just to establish perspective, if we assume that

aT for freshwater ice varies by a factor 0.8 over the applicable range of
porosity, and also by a factor of 0.8 (or 1.25) over the temperature range
-30* to 00 C, then a combined effect when temperature and porosity increase
together might cause OT to vary over the range by a factor of 0.64 (or
1.56). Figure 42 gives Dykins' (1970) data for UT as a function of tem-
perature, and Figure 43 Is a re-plot of his data for aT as a function of
brine porosity. These graphs show that OT actually varies considerably
as temperature (and therefore brine volume) varies, certainly more than
might be expected from the behavior of fine-grained freshwater ice. The
values of OT for tension applied in the vertical direction of the ice
sheet are comparable to, but lower than, the values of aT for freshwater
ice of similar temperature and porosity. The values of GT for tension
applied in the horizontal direction of the ice sheet are much lower than
values for fine-grained freshwater ice.

FLEXURAL STRENGTH

Flexure of an elastic beam induces longitudinal stresses, compressive
and tensile, which increase linearly with perpendicular distance from the
neutral axis. If aT < ac, the beam will break when the stress at the
outer surface of the convex side reaches a value equal to OT . For a
linearly elastic material which fails by brittle fracture, a measure of

aT can be obtained by calculation from the bending moment, the moment of
inertia, and the beam depth. The simple formula is based on the following
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assumptions: 1) linearly elastic homogeneous material, 2) equal moduli in
tension and compression, 3) small strains, with cross-section planes re-
maining plane and mutually parallel. It is important to note that fracture
initiates at the surface, the zone of critical stress is very thin, and the
fracture propagates in a stress gradient. For ice beams loaded at typical
rates the behavior is not purely elastic, the effective moduli for tension
and compression are not equal, and the material is often inhomogeneous.

.* Recognizing that beam flexure does not measure the uniaxial tensile
strength of the bulk material, the value of aT calculated from beam ex-
periments probably ought to be called the modulus of rupture, or the flexu- P
ral strength. The latter term will be used here with the symbol OFT.

One special feature of flexural strength measurements is that they
include the results of both small-scale lab tests and large-scale field
tests on in situ beams. The values of OFT for the two types of tests are
very different for a variety of reasons. One is the inherent scale effect

-* for the bulk strength of materials, which will be discussed under a separ-
* ate heading. Another reason for the difference is that in situ beams
". sitting in water are often subject to steep and variable temperature gradi-

ents across the depth of the beam, to the extent that OFT varies with the
" time of day. Yet another reason is the variation of properties with ice

depth, brought about by changes in the rate of ice growth.

Laboratory flexural tests may employ beams in three-point or four-
point bending, while in situ tests often use cantilever beams. Cantilevers
introduce additional complications, since the root of the cantilever is not
anchored rigidly, especially if the beam is wide relative to its depth.
There may be stress concentrations at the corners of the beam root (unless
curved fillets are formed), and the effects of stress concentrations in ice
are strongly sensitive to loading rate and temperature.

Measured flexural strength is sensitive to rate of loading, but the
nature of the relationship is not well defined. There seem to be no syste-
matic data for freshwater ice, and the results for saline ice are somewhat

* inconsistent. For small beams, Tabata (1967) showed OFT with a
- minimum at 0.01 MPa/s, and an increase with ; up to 0.2 MPa/s at a tempera-

ture of -9°C. In more recent work on small beams at -10 and -20'C, Tabata
et al. (1976) found no correlation between OFT and ; for stress rates in
the range 0.01 to 1.0 MPa/s. Lainey and Tinawi (1981) showed OFT
dropping from a maximum at rates just below 0.1 MPa/s, with a slow but
steady decrease of OFT as ; increased from 0.1 to 0.6 MPa/s. These data
covered the temperature range -5° to -40*C. Saeki and Ozaki (1981) found a
slight increase of OFT between 0.005 and 0.5 MPa/s, with a drop to lower
values for the range 0.7 to 20 MPa/s (test temperature -70C). Data given
by Nippon Kokan (n.d.) for small beams at -2'C show OFT decreasing very
considerably (factor of 5 or more) as deflection rate increases within the
range 0.1 to 100 mm/s.

For large in situ beams, Tabata et al. (1967) showed OFT increasing
greatly (factor of 5 or so) as a increased from about 0.05 to 5 MPa/s at
-2°C. However, Mattanen (1976) found that a had no obvious influence In
the range 0.01 to 10 MPa/s, provided that inertial effects in the water and
the ice were eliminated.
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The Information on rate effects is obviously very confusing, and it is
not easy to decide to what extent the various trends are influenced by real
physical changes, and to what extent by imperfections of test technique.

The effects of temperature on OFT appear at first sight to be less
controversial, even though the validity of the elastic assumptions must
vary with temperature. For small beams of freshwater ice, Weeks and Assur
(1969) give a summary graph which shows OFT increasing linearly as tem-
perature decreases, but for at least one of the data sources represented in
the graph, the original data are perhaps less convincing than the Inter-

preted trend. For saline ice, Lainey and Tinawl (1981) show a small
Increase in OFT as temperature drops from -50 to -20°C, and a much more
rapid increase of OFT between -20 and -40'C (Fig. 44). This perhaps
says more about the relative validity of the test interpretation as a func-
tion of temperature, but as the result of an analogue test it is Interest-
ing. Saeki and Ozaki (1981) give beam data for less saline ice at tempera-
tures between -0.5* and -6*C, showing, not surprisingly, a strong increase
of OFT in this range. Butkovich (1959) tested small beams cut vertically
and horizontally from sea Ice, with temperatures in the range -2* to
-26*C. His regression lines show a small increase of OFT over the range,

but the data have a great deal of scatter. In earlier work, Butkovich
(1956) carried out 80 tests on small beams, but his results show no signi-

ficant correlation between OFT and temperature for the range -2* to -17*C

(OFT was mainly in the range 0.4 to 1.2 MPa).

The effect of brine volume on OFT was described by Weeks and Assur
(1967, 1969), who compiled test data for In situ cantilever beams. The
results were represented by a linear decrease of OFT as the square root
of brine volume increased from zero to 0.32 (brine porosity 0 to 0.1); for
greater porosities, OFT was taken as constant. An updated compilation by
Schwarz and Weeks (1977) weakened the case for the latter assumption, and
the argument for using the square root of brine volume as the porosity
variable no longer seems greatly persuasive.

When the general body of data for small beam tests is added to the
plot (Fig. 45), it is hard to perceive any orderly trend. Clearly,
strength ought to decrease as porosity increases, but because increased
porosity often reflects higher temperatures, the ductility of the material
tends to increase with porosity.
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Figure 45. Summary of data for OFT as a func-
tion of brine porosity.

FRACTURE TOUGHNESS

Virtually all fracture toughness measurements on ice depend on tests
which flex or pry open a crack in "Mode I." Test data are thus presented

in terms of the critical stress intensity factor, Kjc. Because the P
measured values for KIc vary greatly, and because we need some Intuitive
"feel" when considering these values, it is worth recalling what Kjc .
means. 

-

Toughness Is measured by the specific energy dissipation at failure
__ Gc, which Is also known as the critical crack extension force. Kjc Is

related to Gc by

Kic =(EG )/
c

In plane stress, and
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/EG 1/2

K = C
Ic

In plane strain. Thus there is a simple direct relation between KIc and
G if E is a constant. KIc Is also related to the overall tensile
failure stress of -he material a:

i/2
Kic = ( C)

where c Is the half-length of the controlling cracks. This relation
Imolies that, if c Is constant a,.d the stress state does not change, Kic

directly proportional to the bulk strength of the material.

For ice straining at low rates, say less than 10- 6 s- 1, we would not
expect KIc to have any relevance, since the ice is inelastic and it flows
without cracking. At extremely high rates and low temperatures, ice could
conceivably become perfectly elastic and perfectly brittle, so that the
original Griffith theory might apply. For such a limit, with Yp tending
to the specific qurface energy y, Klc would tend to a low value:

1/2
KIc (2Ey)

in plane stress. Taking E = 10 GPa and the grain boundary specific energy
y = 0.1 jIm 2 for freshwater ice, the lower limit of KIc might be about 45
kN m-3 /2 for plane stress.

Measured values of KIc for ice are typically of order 100
kN m-3/ 2 . This is not much higher than the "Griffith" value, and it
implies that yp 5Y, assuming that E is more or less constant.

When strain rate, or loading rate, is varied in a fracture toughness
test for a given type of ice, we might expect KIc to decrease as e or a
Increases, at least for non-saline ice. While at least one set of experi-
ments shows a trend opposite to this, the overall trend shown by compila-
tion of published data is in the expected sense (Fig. 46, 47). Rate
effects were originally expressed in terms of the speed of the testing
machine, which is clearly of limited interest, but now the accepted rate
variable seems to be KI, which is really the inverse of the time to
failure. Strain rate has been used as a variable, but there are some prob-
lems of interpretation.

In sea ice, KIc has been found to decrease with increase of loading
rate for ki > 10-2 kN m- 3 /2 s- 1, or effective > 10- 3 s- 1 (Urabe et
al. 1980, Urabe and Yoshitake 1981a,b). However, for lower rates KIc
appears to be Insensitive to rate (Fig. 48). The lowest measured values
for sea ice are lower than the expected "Griffith value" for pure ice.

In discussing rate effects, it has been assumed that KIc will de-
crease as the material becomes more elastic and more brittle due to higherloading rates. Extending this single line of argument to temperature ef-

fects, It might seem reasonable to expect Kic to decrease as temperature
decreases, since lower temperature undoubtedly makes ice more elastic and
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* more brittle. However, experimental data (Fig. 49) show exactly the oppo-
site trend, with Klc increasing as temperature decreases. This observed
trend is consistent with the fact that tensile strength UT increases as
temperature decreases, since Klc is proportional to strength if the crack
length 2c is constant. This perhaps gives a clue to the resolution of what
apnoars at first sight to be a fundamental contradiction: K lc should be
evaluated in relation to the overall strength of the material. Another
potential factor is temperature-dependence of surface energy, which is
mentioned later.
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If measurements of KIc are valid, they permit a systematic treatment
of flaw size. For a constant value of KIc and variation of crack length
2c between samples, the tensile strength oT might be expected to be

inversely proportional to /v-. Urabe and Yoshitake (1981b) tested both
notched and un-notched beams with varying grain size In order to calculate
flaw size for the ice, and they found a perfect 1:1 correlation between

calculated flaw size and observed grain size. However, this experiment
appears to merit further discussion, since both aFT and KIc were func-
tions of grain size, and the effect of grain size on aFT appears to be in
the wrong direction.

If we refer back to the basic Griffith equation for strength as a
function of modulus, surface energy, and crack length, then theoretical
values of tensile strength can be calculated by taking the flaw size 2c
equal to the grain size of the Ice. For ice of very low porosity,
(< 0.01), the true Young's modulus E Is 9 to 10 GPa at typical tempera-

tures. For non-saline Ice, the vapor/solid specific energy y is approxi-
mately 0.1 J/m 2 , and the lIquld/solid surface energy is about 30% of the

vapor/solld value (Fletcher 1970, Hobbs 1974)*. The vapor/solid value Is
probably the appropriate one for consideration of brittle fracture In
"cold" ice, but the lower Ilquid/solid value might be applicable In
relatively warm ice which has a "liquid-like layer" or liquid-filled

* Liu and Miller (1979) use values that are off by two orders of magnitude

due to incorrect conversion of Fletcher's values.
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flaws. The latter condition might give something equivalent to the
Rehbinder, or Joffe, effect, whereby y is reduced by adsorption of certain

surface-active chemicals, and strength decreases In consequence.

If we substitute Into the Griffith equation E = 10 GPa and y = 0.1
J/m2 ,

1/2 10 x 10-11/2T=(2) (101 c 0 I

T c

2.52 x 104= Pa

where the half-length of the controlling flaw, c, is In metres. In Figure
50, the resulting calculated values of aT are given as a function of the
flaw size 2c, which is assumed equal to grain size. The theoretical rela-

tion is compared with actual measured values of OT, and the agreement Is
surprisingly close. Since the controlling flaws could be substantially
baialler than the grain diameter, the agreement might even be improved. The

significance of this exercise Is in demonstrating that simple Griffith
theory cannot necessarily be rejected for Ice.

Vaudrey (1977) measured Klc for sea ice at -10" and -20'C, and
plotted the results against the square root of brine volume for a very
narrow range. Vaudrey drew a line on the graph to indicate linear decrease
of Klc with Increase In the root of brine volume but, In fact, there was
no significant correlation between the variables (KIc values scattered by
a factor of 5). Shapiro et al. (1981) made measurements In the same range
(brine porosity 0.16 to 0.38), and showed a more convincing decrease of
KIc with Increase of porosity, although there was still large scatter.
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EFFECT OF GRAIN SIZE ON STRENGTH
AND DEFORMATION RESISTANCE

Early creep studies on non-saline ice suggested a strong increase of
strain rate with grain size, but the experiments themselves were not fully
acceptable. More recent published work by Baker (1978) showed a compli-

- . cated relation between creep rate and grain size, with the direction of the
trend different for different size ranges, but again the experiments seemed
questionable. Subsequent studies by Duval and LeGac (1980) showed no
significant variation of final creep rate with grain size.

For the strength of ice in the brittle range, the expectation is that
strength of isotropic material would be inversely proportional to the
square root of grain size. This is in keeping with the ideas of fracture
mechanics if grain size is identified with flaw size. Limited data for
ac tend to bear out this expectation (see Fig. 29, 30, 31), but systemat-
ic verification has not yet been published. Some recent values of GFT
for sea ice of varying grain size (Urabe and Yoshitake 1981b) appear to be
in direct contradiction to the expected trend, but Currier and Schulson
(1982) measured OT at 10-6 -1 and found the results could be described
by the Hall-Petch relation, i.e. aT = a + b d- 1/ 2 . In the ductile
range of behavior, it seems that the maximum yield stress does not change
with grain size (Jones and Chew 1981).

To sum up, there is no convincing evidence that strength or deforma-
tion rate vary with grain size for the ductile (creep) range of behavior.
For the brittle range, one might expect strength to decrease as grain size
increases, but substantial experimental proof has not yet appeared.

-. SIZE EFFECTS FOR STRENGTH AND DEFORMATION RESISTANCE

In general, the measured strength of a brittle material decreases as
the size of the specimen increases, or as the critically stressed volume of

*material increases. The accepted explanation is that bigger samples con-

tain bigger flaws and, as shown by fracture mechanics, strength decreases
as flaw size increases. Sophisticated statistical theory has been
developed for consideration of the distribution of flaw sizes within a
given specimen, for estimation of the probability of encountering larger
flaws in larger volumes, and for the effects on strength through a "weakest

link" theory.

A simple relation can be derived from rather involved theoretical
arguments (see Hawkes and Mellor 1970). If the most probable (modal)
strength is SV1 for a specimen of volume V1 , and SV2 and V2 are modal
strength and volume for a geometrically similar specimen subjected to the
same strain rate, then

S 1/

Vi 2

where m Is a characteristic constant.
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Experiments on nonmetallic brittle solids indicate that m Is of order
10, so that the volume effect is a weak one. In terms of a linear dimen-
sion L the effect is stronger, since V L3 and therefore S - L-3 /m. If
m 1 10, S Is approximately inversely proportional to the cube root of L.
Thus an increase in L by a factor of 10 would roughly halve the strength.

The creep resistance of homogeneous ice at low strain rates (E < 10-6

s- 1) is probably not much dependent on the volume of material involved,
provided that the minimum linear dimension of any test sample is greater
than 10 grain diameters.

FAILURE OF ICE IN MULTIAXIAL STRESS RATES

When Isotropic ice is subjected to triaxial compression at low strain
rates, it is usually said that the bulk stress a has no effect on the
induced deviatoric strain rate provided that "allowance is made forindued dvlaoricstrin rte ij'

depression of the melting point." A more straightforward interpretation is
that creep rate increases slightly, and the ductile yield stress decreases
slightly, when the confining pressure increases at constant temperature.
If the pressure is increased sufficiently, for example to about 0.1 GPa at
temperatures near -100 C, ice Ih transforms to water and its shear resist-
ance drops to virtually zero. Thus the yield surface in principal stress
space is a cone with its apex on the hydrostat line (a1 02 = 03) at the
pressure for the phase transition to water (Fig. 51), at least for tempera-
tures above -20'C.

The same ice under triaxial compression at high strain rates suffers
internal cracking and dilatation when unconfined, but confining pressure
subdues the cracking and the deviatoric yield stress Is increased. A first
approximation for the failure criterion under these conditions would be a
linear Coulomb-Navier-Mohr criterion. In the compression quadrants of
principal stress space, the yield surface corresponding to such a criterion
would be a cone disposed symmetrically about the hydrostat line, with its
diameter increasing indefinitely as pressure increases. Clearly such a
surface contradicts the pressure melting effect which was just discussed in
connection with yield for low strain rates, and the actual yield surface
must account for both effects of pressure. Such an envelope is sketched In
Figure 52, which shows "strength" increasing with confining pressure at
first, and then decreasing as the pressure becomes very high. Triaxial
tests by Jones (1978), at -11.5*C and strain rates of order 10-  s- , show
the effects of confining pressure reversing at about 30 to 40 MPa (Fig.
53).

Conventional compressive triaxial tests (01 * 02 = 03) were made on
natural and artificial sea ice by Soviet investigators (Panov and Fokeev
1977). The axial stress a, increased with 02, 03 (Fig. 54), and the
maximum shear stress (01 - 02)/2 increased nonlinearly with the normal
stress on the plane of maximum shear. When 02 was approximately 4 MPa, the
yield values of 01 were an order of magnitude higher than cc . Under
confining pressures 02, the failure stress a, decreased as salinity and
temperature Increased, i.e. salinity and temperature had effects similar to
their effects on cc .  Isotropic fine-grained ice behaved differently than
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Figure 53. Variation of yield stress with conf in-
ing pressure for conventional triaxial tests on
non-saline ice at -II.50 C and a strain rate of 5.4x I0-  s (Jones 1978).
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2oprallel to freezig plane ice at temperatures of 52. to -3C and

".'" 2 3salinities of 0.16 to 3.54 0/00 (after
x cT MPa) Panov and Fokeev 1977).

anisotropic ice, adstrength varied wihteloading dieto naniso-

~tropic material. Values of * for the Mohr envelope were mostly in the
~range 300 to 50, with extreme values of 140 and 550*

Triaxial tests to very high pressures (up to 350 MPa) and very low
temperatures (-78o to -1960 C) were made recently on non-saline polycrystal-
line ice (Durham et al. 1982). Very high yield stresses were recorded, and
phase transitions to higher density polymorphs were reached.

For the tension-compression quadrants of traxal principal stress
space there is little experimental information, and we have to rely largely
on intelligent guesswork.

Under very low strain rates, ic is expected to equal 0T, and

oexperimental data support this idea. With 0 c = aT, the Tresca or von
Mises envelope can be extended across the tenslon-compression quadrants
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Fiue55. Two-dimensional rpe
sentation of the Tresca and von
Mtses criteria, and the linear

i Coulomb-Navier-Mohr criterion.

without conflict (Fig. 55). The pressure-melt version of these criteria
(Fig. 51) can similarly be extended without significant conflict for low
temperatures (-10*C), but for higher temperatures an extrapolation of such
an envelope would predict oc < aT, and there is no experimental evi-
dence for such an effect.

At high strain rates, where cc a T, a straight line connection of
the oc and OT points Is not likely to be far from the truth, especially
if an adjustment is made to assure continuity of slope as the envelope
passes Into compression-compression where the linear Coulomb-Mohr envelope
Is applicable for low pressures. Experimental data by Haynes (1978) are
not In conflict with this suggested trend.

The observed ratio of cc to oT gives useful Insight into the fail-
ure criterion for low confining pressures and for the tension-compression
quadrant. At low strain rates in ice, Oc/a T = 1, as already discussed,which means that a von Mises or Tresca envelope is a good approximation for

low pressures and for tension-compression. At higher strain rates,
Oc/OT increases from 1 to about 4 ac-ording to the data of Figure 40.If the linear Coulomb-Navier-Mohr criterion is extended into the tension-
compression quadrant (where It is not strictly applicable), the predicted
value of c/ T is 3 for s30ti and 4 for o37.  By contrast, the
simple Griffith criterion predicts c/GT  8, while the three-dlimen-
sional version predicts c/gT . 12. The Babel and Sines (1968)
generalization of the Griffith criterion predicts oc/ T  3 if the
controlling flaws are circular holes, with the value increasing progres-
sively to 8 as the flaws change progressively from a circular cross section
to a completely flat ellipse.
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For the tension-tension stress state there are no data for ice, and in
view of formidable experimental difficulties it may be a long time before

there are reliable data. Perhaps the most reasonable guess is that, for
isotropic ice in biaxial or triaxial tension, failure will occur when one
principal stress reaches the uniaxial strength OT . This gives the envel-
ope as lines parallel to the principal stress axes, with intersection on
the hydrostat line at 01 = 02 03.

In Figure 52 the preceding deductions about the behavior of isotropic
ice are combined to form a complete failure envelope, slightly modifying
the lines deduced for each Individual quadrant so as to give continuity of
slope across the axes.

The three diagrams discussed above are drawn in two dimensions because
they are difficult to draw in three dimensions. They should not be con-

fused with two-dimensional diagrams for blaxial stress states, i.e. for
plane stress.

Biaxial tests were made by Frederking (1977), who pressed prismatic
specimens between a pair of platens in one direction while rigidly re-
straining the ice in one of the other orthogonal directions, and leaving
the remaining pair of faces stress-free. For isotropic ice the confinement
had very little effect on the crushing strength, which remained approxi-
mately equal to the unlaxial compressive strength for strain rates of about

3 x I0-7 to 3 x i0- 4 s- 1. This implies that, to a first approximation, the
failure envelope in the compression-compression quadrant could be repre-
sented by lines parallel to the axes (Fig. 56). A similar effect was found
when the lateral restraint was applied to columnar ice in a direction
parallel to the long axes of the columns. However, If the restraint was
applied perpendicular to the long axes of the columns, the failure stress
in the loading direction was roughly double the unlaxial strength.

I +(Tension)

UT

-(Compression) C,,- U

Plane stress for - I__ I+(Tension)
isotropic ice or stress- - - -

free surface parallel to
long axes of columnar
grains.

Plane Stress (Ralston)-
(stress-free surface
normal to long axes of
columnar groins)

-(Compression)

Figure 56. Failure envelopes for biaxial stress

states (02 0).
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Ralston (1980) used the data of Frederking (1977), together with a
parabolic Coulomb-Navier-Mohr criterion, in order to deduce the plane
stress failure envelope shown in Figure 56. It should be noted that this
Dlane stress envelope crosses the 450 line (0, = 03 ) for a different reason
than the triaxial envelope proposed by Mellor (1979), and shown in Figure
52.

THERMAL STRAINS IN ICE

At 00C and atmospheric pressure, the density of pure water is 1.00
Mg/m3 and the density of ice is 0.917 Mg/m 3, so that freezing involves a
volumetric strain of -8% and thawing gives a volumetric strain of +9%. As
ice Is cooled at constant pressure its density increases, i.e. the ice con-
tracts. The expansion coefficient varies with temperature, becoming nega-
tive below -200*C, but for most purposes the latter complication can be
ignored.

For a single crystal of pure ice, the coefficient of linear expansion

varies slightly with crystallographic direction, but at temperatures near

0°C the difference is only about 2% (greater parallel to the c-axis) and
can be ignored for most practical purposes. Thus the coefficient of linear
expansion a can be taken as a = y/3, where y is the coefficient of cubical
expansion given by density changes. At temperatures between 00C and -40*C
we can take a = +5 x 10- 5 C-1 (± 4%) for freshwater polycrystalline ice,
noting that a decreases by approximately 10% as temperature drops from 0*
to -400C.

In sea ice, or other ice containing significant amounts of dissolved
impurities, the situation is very different. At temperatures near the
melting point, saline ice consists of solid ice, plus liquid inclusions
which change in volume and sallni-y as the temperature changes. Although
the ice crystals have a positive expansion coefficient, phase changes in
closed brine cells could create freezing strains in a negative sense, i.e.
volume increases as temperature drops. Above about -5*C, the freezing and
thawing of brine inclusions is usually thought to be the dominant effect,
implylng that sea ice contracts as temperature increases in this range. At
very low temperatures, when the brine is frozen and solid salts are preci-
pitated, the behavior is almost identical to that of pure ice.

In the past, effective values of y and a have been calculated as func-
tions of temperature and salinity, using density values from the sea ice
phase diagram. The usual source is a table and graph derived by Anderson
(1960) on the assumption that air volume is zero and all brines remain
trapped in place. Air volume was taken into account by Schwerdtfeger
(1963) and by Cox and Weeks (in press), but of Itself included air does
little to change the variation of calculated density with temperature.
While these calculations are sound in principle, they may not be very
realistic, since at high temperatures brine can be expelled into air
bubbles and even out through the ice boundaries. A reappraisal of the
problem will be published soon by G.F.N. Cox of CRREL.

If ice is cooled or warmed very slowly, thermal strains can be accom-
modated by creep processes without any cracking, especially if the ice
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temperature is above -10C. However, if very rapid cooling occurs at low
temperatures, high strain rates are induced in ice and It cracks. For
strain in one direction, the strain rate c produced by cooling of the ice
at a rate de/dt is

a c(d6/dt)

assuming that a is Invariant with temperature 0. Strain rates developed
this way are likely to be much lower than the strain rates which are asso-
ciated with brittle fracture in laboratory strength testing of ice. For
example, extremely rapid cooling at 1O'C/hr would give = 1.4 x 10- 7 s- 1

in pure ice. However, fairly large tensile strains can develop if the
temperature change is great enough. For example, in non-saline ice a
temperature drop of 20*C gives a tensile strain of 10- 3 (0.1%), which is at
the top end of the range of tensile failure strains measured by Hawkes and
Mellor (1972).

The most extreme cooling rates and temperature changes occur at the
upper surface of an ice layer. Both the amplitudes and rates of tempera-
ture change decrease with increasing depth in the ice. Thus cracking
initiates at the surface, and the depth of crack penetration is limited by
the attenuation of temperature waves with depth.

-* The effect of cooling at the surface of sea ice has been analyzed in
terms of elastic plate flexure, but because strain rates are likely to be
low (< 10- 8 s-1 ) and the bulk of the ice is likely to be "warm," the
assumption of linear elasticity seems dubious.
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PART !ii. SOME CHARACTERISTICS OF FRAGMENTED ICE

MECHANICAL PROPERTIES OF BRASH ICE AND ICE RUBBLE

When floating ice is fragmented, it can be regarded as a granular con-
tinuum if the dimensions of the volume under consideration are significant-
ly greater than the block size of the broken ice. This interpretation is
easiest to justify for brash ice, which can be regarded as a floating accu-
mulation of more or less equant fragments in the size range 0.02 to 2.0 m.
However, such an interpretation can perhaps be extended to heavily frag-
mented ice sheets when there has been rafting and ridging.

A number of research groups have treated fragmented floating ice as a
granular material conforming to a linear Coulomb-Navier-Mohr yield criteri-
on, and characterized largely by a friction angle *. Measured values of
have been summarized, together with additional values of deduced from
crushing experiments (Mellor 1980). In this compilation, c ranges from 420
to 580, but some recent test results (Weiss et al. 1981) give values in the
range 110 to 340 for ice of lower porosity.

Other important properties are the block density, and the porosity of

the fragmented mass.

For bubble-free freshwater ice the block density is 0.917 Mg/m 3 , but
* ' for bubbly ice or snow-ice the density may be as low as 0.89 Mg/m3 . For

sea ice, block density varies with salinity, temperature and air content.
The range for intact sea ice is approximately 0.89 to 0.93 Mg/m 3 , but for
fragments equilibrated t'-th seawater the density is likely to be at the
lower end of this range, say 0.9 Mg/m

3.

The porosity n of the ice mass varies with the degree of packing and
the size gradation of the fragments. "Ice rubble" used in experiments has
had porosity less than the 40% or so which is typical for uniform granular
solids (e.g. sand, crushed stone). Keinonen and Nyman (1978) used ice with
n from 0.32 to 0.37, Prodanovic (1979) had n = 0.38, and Weiss et al.
(1981) used material with n ranging from 0.16 to 0.33. Sandkvist (1981)
gives estimates of the water content of brash as a function of depth from
actual field observations. His data suggest an almost linear decrease of
porosity with depth, from virtually zero at the water surface level to 1.0
at the base of the brash layer. For fresh pressure ridges in sea ice there
have been numerous inspired guesses at the overall porosity, but virtually
no measurements. One might guess that porosity in a pressure ridge would
vary from small values near the waterline (say about 0.05) to fairly high
values (say about 0.3) near the crest and the keel, actual values varying
to some extent with the mode of ridge formation and the amount of freeze-
back.
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When a wide layer of unbonded fragmented ice is floating in static
equilibrium, the internal stresses are determined by gravity body forces,
i.e. by the weight of the ice above water level and by the buoyancy below

water level. If the total ice thickness t is significantly greater than
the characteristic block size d, the layer can be treated as a continuum.
Making the simplifying assumption that the porosity n and the friction

angle 4 were invariant with depth, Mellor (1980) gave the vertical (oz)
and horizontal (ax, Oy) components of normal stress.

Oz = (1-n) pig - 1)(t-z)

P
=(1-n) Pg [ t, (-iw l)(Z-tl)]

pw

where p1 is the ice block density, Pw is the water density (- 1.026
Mg/m 3 for seawater), z is the depth below the top surface of the ice, t is

the total Ice thickness, tj Is the thickness of ice above water level. The

values of ox and ay depend on whether the ice layer has recently been
compressed or extended horizontally. The limiting states of stress accord-
ing to the Rankine theory of plastic yield give:

(a) for the passive state (compression) a (asn
x

1(-sin
(b) for the active state (extension) 1+-in-)

(c) for the neutral state a =[v/(1-v)]azxz

For a loose fragmented lay of thickness t in which n and 4 are
invariant with depth, the crushing resistance per unit width, R, is

1(1-- t+sin l )Pg 1 2
R - (-~ ~ - )

w

Although this expression is oversimplified by the assumption of constant
values for n and 4, It serves to illustrate that the average crushing

pressure R/t is proportional to t. If there is some constant cohesion c
between the ice fragments, the average crushing pressure includes a term
which is Independent of thickness:

R 1(l+sin4 ( P1 + l+si I1/2= )~l0(l-n)p g(l 1 P-)t + 2c(l 0n

W

When c is large, the second term of the previous equation dominates,
and the resistance is then similar to that of an intact ice sheet with a

crushing stress of 2cV(1+sin)/(1-sInO). With a two-dimensional Coulomb-
Navier-Mohr failure criterion uniaxial compressive strength is usually

expressed as 2c[cos/(1-sln)J, which is identical to the crushing stress

just mentioned.
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The way in which a uniform homogeneous brash layer responds locally to
horizontal compression against a fixed barrier ought to depend on the dis-
placement velocity (u) relative to the velocity of propagation for the
front of a plastic disturbance (U). If u/U is very low a uniform thicken-
ing of the whole layer will occur, but if u/U > I there can be localized

thickening, "plastic wave propagation," and pressure ridge formation. If
there is a discontinuity where the layer thickness increases from h I to h29
conservation of mass and momentum requires that

u/U = (h2 /h1J - 1 •

For an increase from hl to h2 , an upper limit of h2 /h1 can be esti-
mated In various ways. From simple energy considerations the maximum value

of h2 /hI is

(h9  1+sIn41)(h,- lmax = (1-sin ,1

where Is the friction angle for the original layer of thickness hl.
Different values , and 2 for the layer sections of thickness h i and h 2

can be accounted for by considering the thin section to develop a state of
passive pressure, and the thick section a state of active pressure. Thus

__ _ _ _ _ _ /2 t _ _ _ /21 ]l+sin 1)/(l+sin 9) 1/h2- [( + i 1 (l~ 1/2

"'l-sln~li 1-sin 2 "  h 1  - 1-sinOl1l-sin0 2 )

Another estimate can be made by applying the analogy of a retaining wall at
both ends of the transition slope between the two sections of the ice layer

(see Mellor 1980).

The foregoing ideas have been applied to the analysis of ship resist-
ance in brash ice (Mellor 1980). While the assumption of a Coulomb-Navier-

Mohr type of failure criterion seems reasonable for estimating stresses in
the ice layer, forces against ship hulls and structures, and pressure ridge
dimensions, it may not be appropriate for consideration of in-plane Inden-
tation. From comparison of the th, )retical slip surfaces in front of an
Indenter (i.e. ship bow) with observed slip surfaces, It appears that a von
Mises type of criterion might be a better assumption for problems of this

type, In which the plane stress condition prohibits indefiite increase of
shear strength with increase of confining pressure.

PRESSURE RIDGES AND LEADS

Pressure ridges and leads in sea Ice are linear features representing

compressive and tensile failures respectively. In th2 Idealized forms,
pressure ridges and leads are assumed to form In a band of uniform width,
running at right ongles to the direction of tie major principal stress in

the ice sheet.

The best known and most Intricate model for pressure ridge forniation
Is one by Parmerter and Coon (1972). An existing lead is assumed to close
as compression develops, and ice rubble Is ,ssumed to disturb the Isostatic
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equilibrium of the ice sheet, leading to flexure and breakage. The ice
fragments are pushed together and vIled up, with horizontal thrust from the
unbroken ice sheet supplying the potential energy for piling up the ice
against gravity. Vertical dimensions of the ridge are limited by the
available horizontal thrust, and ridge geometry is controlled partly by the
angle of repose of the ice fragments. Development of a ridge is simulated
by Iterative calculations for the kinematics of the process.

The actual mechanical processes of pressure ridge formation are still
not firmly established, and the following notes are intended to give an
idea of the forces and stresses developed by some of the mechanical proces-
ses which might be Involved in forming pressure ridges and leads. In
general, they suggest that processes Involving quasi-elastic deformation
and quasi-brittle fracture call for horizontal thrust forces which are very
high compared to the thrust likely to be developed by wind shear or current
action.

Wind and current action

Sea ice is displaced and strained in the horizontal plane by wind
shear on the upper surface or by water shear on the lower surface. In
either case, the shear stress T can be expressed as

T - CD P u 2

where p Is the fluid density, u is the "free stream" fluid velocity (rela-
tive to the ice), and CD is a drag coefficient. For simple calculations,
air density can be taken as 1.3 kg/m 3 and water density can be taken as

l , I 1' l I111ill, I l ' I i lI ' 1 I

Water Wind

100= CO.3xI5 CD.3xlO3/

E/
- / ~C0.13XIO 6-

.0 ./ /_
0 7

02

0 /
U

, I , Ij,, ,II I , , I ,I , , ,,,,
0.01 0.1 1.0 10 100

IL, Fluid Velocity (m/s)

Figure 57. Surface shear stress as a
functionof fluid velocity for wind and
water drag against sea ice.
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1000 kg/m 3. A recent determination of CD for water drag under first-year
sea ice gives CD - 1.32 x 10- 3 (Langleben 1982), but for multiyeas pack
ice higher values have been measured, e.g. 2.2 x 10 - , 4.14 x 10- , 6.6 x
10- , 8.3 x 10- 3 (see Langleben's paper for details). The value of CD
for air varies from 1.3 x 10- 3 for strong winds over flat snowfields, to
the range 1.6 x 10- 

- 3.2 x 10- 3 for open sea ice, and perhaps to higher
values for very rough pressured sea ice. For present purposes we can con-
sider smooth first-year sea ice with CD - 1.3 x 10- 3 both on top and
underneath, and calculate the shear stress as a function of fluid speed
(Fig 57). For rougher ice, with CD - 3 x 10- 3 , values of T are also
shown in Figure 57. It might be noted that water shear and wind shear are
of comparable magnitude for current velocities in the range 0.3 to 2 knots
and wind speeds in the range 10 to 60 knots.

The shear stresses in Figure 57 are very low, so that they have to be
integrated over large areas to produce significant forces. If F' is the
force per unit width which is developed by integrating T over an upstream
distance L

F' LT

If T = 1 N/m2 is taken as a representative value for fairly fast currents
(0.2 - 0.5 knot) or rather strong winds (40 - 45 knots), and it is then
integrated over fetches of 10 km and 100 km, the resulting values of F'
are:

L - 10 km F' 10 kN/m

L -I00 km F' 00 kNr/m

Parmerter and Coon (1972 suggest that typical wind stresses on sea Ice are
of the order of 0.05 N/m Such stresses lead to very small values of F',
even with very large values of L, but they deduce that F' is only of order
1 kN/m during ridge formation (i.e. T = 0.05 N/m2 , L - 20 kin).

If the ice thickness t is of the order of I m, the average normal
stress in the ice, F'/t, is very low, even with strong winds or strong
currents acting over great distances. For example, a normal stress of 100
kN/m2 (i.e. 1 bar) will cause ice to creep at a rate which is barely
detectable over a period of days.

By contrast, If a fixed object of finite width projects through the
ice sheet, or if a rigid body is embedded in the ice sheet, then wind and
current shear is quitL sufficient to produce very high local stresses.

Tensile and compressive failure of a wide ice sheet

When a wide sheet of ice is subject to simple unidirectional shear
from wind or current, the ice is in a state of uniaxial strain in the
horizontal plane, but the upper and lower surfaces of the ice are
essentially free from normal stress or significant shear stress. In the
ice, the mean normal stress in the direction of the wind or current, oxxt
is

a - F'/t
xx
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where F' will rarely exceed 0.1 MN/m, and t is typically between 0.1 and 2
*m In first-year ice. This suggests that, while oxx might reach 1 MPa in

very thin ice, it is likely to be less than 0.1 MPa In ice of appreciable
thickness.

The tensile fracture strength of unflawed Ice is up to 2 MPa when
measured in the laboratory, but large masses of natural ice without obvious
cracks or gross flaws might have a tensile fracture strength closer to 1
MPa. The compressive strength of intact ice is up to 10 MPa when measured
in the laboratory, but for bulk sea ice the compressive strength might be
more like 3 I a.

The fracture strength measured in tests of short duration is not
necessarily of direct relevance to the formation of leads and pressure

.4'

ridges, since the sea Ice may be straining for days before it fails.
Nevertheless, taking into account probable magnitudes of strain rate and
failure strain, it is hard to imagine average failure stresses as low as
0.1 Pa, either for compression or tension.

If the ice sheet is in tension, the stress state is such that failure
can be expected when the tensile principal stress reaches the uniaxial
tensile strength (oxx - aT), assuming that the sheet is uncracked to
start with. However, since oxx is only likely to approach I MPa In very
thin ice, spontaneous tensile fracture must be a rare occurrence. Because
there are always cracks of some kind in the ice, especially thermal cracks
or cracks caused by wave flexure, it seems more likely that leads will form
by the growth of existing cracks. Referring back to the calculated values
of effective tensile strength OT as a function of flaw size 2c, and using
the same values of Young's modulus and surface energy (p. 74-75),

2.52 x 10'O T  Pa

where c is in metres. Thus, if there are existing cracks only 2 m long at
right angles to the principal stress, the effective value of aT for
instantaneous tensile fracture Is only 0.025 MPa.

If the ice sheet is in compression, the stress state is such that
failure could occur when the major principal stress reaches the unlaxial
compressive strength, taking due account of anisotropy in the Ice (crushing
occurs by displacement to the stress-free boundaries). However, it is
unlikely that a wide ice sheet could undergo simultaneous crushing failure
along a broad front, even in very thin ice, since the maximum compression
values of o n are expected to be well below ac.

Buckling of a wide Ice sheet

For an ice sheet in compression, one possible mode of failure is

crushing, as discussed above. Another possibility Is buckling. From the
usual analysis for an axially loaded infinite* elastic beam on an elastic

* The equation for the semlinfinite beam, used by some writers, gives half

this value. The assumption of a semiinfinite beam seems to require that
there be a hinge line where bending moments cannot be carried, and where
there is no vertical force.
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foundation (Hetenyl 1946), the critical force per unit width for buckling
F' is

F' - kEt 3 1/2

b 3(-v 2 )

where k is the foundation modulus (in this case the unit weight of water),
E is Young's modulus, v is Poisson's ratio, and t is ice thickness. Sea
ice is unlikely to buckle under truly elastic conditions, so that the value
substituted for E should be less than the true Young's modulus. If we take
E - 3 GPa, v - 0.3, and k - 1Mgf/m3 (or - 10 kN/m 3)

.W 3/2F' - 3.3 t MN/mFb

when t Is in metres.

If t - 1 m, F'b is 3.3 MN/m, i.e. well above any average value like-
ly to be attained by F' under wind or water shear. If t - 0.1 m, F'b is
0.1 MN/m, which is about the force level developed by strong wind or
current acting over 100 km.

These estimates suggest that buckling by elastic instability across a
broad front is unlikely to occur in any but the thinnest of ice covers,
provided that the ice has uniform properties. However, an alternative
analysis by Kerr (1980) introduces a new idea, and indicates that a semi-
infinite plate of floating ice could buckle under a force smaller than
F'b as it is calculated from conventional theory. The magnitude of this
effect cannot be assessed at present, as there is an undetermined coeffi-
cient in Kerr's result.

Another possibility is that the ice could buckle by creep, especially
as the lower layers are likely to be warmer and softer than the top surface
of the ice. If part of the ice sheet is depressed to the point where local
flooding of the surface occurs, then there is no longer an elastic founda-
tion in that area, and flexure is likely to accelerate.

Flexure of a wide ice sheet

Suppose that a state of compression develops, and that the ice sheet
has a discontinuity, such as an old lead, at right angles to the thrust
direction. If overthrusting can develop at the discontinuity, the ice will
be flexed by the wedge action of the overthrust. An analysis for a
semiinfinite elastic beam on an elastic foundation is given by Hetenyi
(1946), and for the case which is of particular interest the bending moment

M Is

SB
A Ax 4

where PI is the vertical force applied to the free end of the beam. The
other symbols are defined by
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k )1/4

Bx e - sin A x

where k is the foundation modulus, E is Young's m~dulus, and I is the
moment of inertia of the beam section. Differentiation of M with respect

to horizontal distance from the free end x gives

am -e (sin Ax - cos Xx).

M is a maximum or minimum with 3M/3x - 0, I.e. when x + m or x - w/2X. The
required value of x for maximum bending moment in a wide plate is thus

i_/4EI\1/4 - r E t3  11/4

S 2L3k(lV2)J

This implies that, when the ice is flexed, It will tend to break first at a

distance x, from the free edge. Taking E - 3 GPa, k - 10 kN/m 3 and v -

0.3, values of x, are 5.1 m, 28.6 m, and 48.1 m for Ice thicknesses of

0.1 m, 1.0 m and 2.0 m, respectively.

If there Is no axial force being applied in the x-direction, the

vertical force P1 reaches a maximum value of

M X
P, maxP1 - Blx

A X

where the maximum "failure" value of the bending moment at distance x* is

H 
CyFT I

max 
2

in which OFT is the apparent tensile strength of the ice derived from

beam flexure tests. Thus, the value of P1 at failure is

2 aFT I k 1/4 exx* aFT r 3kt5  11/4 e"/2

P1 t (k)" /4 sin Ax " 6 LE(I_V2)3j sin/2

From the discussion of beam flexure tests on ice, it can be seen that

measured values of OFT vary widely, but for present purposes we assume

OFT - 0.4 HPa. Taking E - 3 GPa, v - 0.3, k - 10 kN/m3,

P1  - - 0.706 t5 /4  MN/m

when t is in etres. For t I m, P1  700 kN/m. For t 0.1 m, P, 40

kN/m.

WN I
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If P1 is exerted by a wedge action as overthrusting occurs, the hori-
zontal force F1 that is needed to develop P1 can be estimated in terms of
an effective friction coefficient p. For a small wedge angle,

F' u P1 .•
f

Taking p - 0.3, Fi is about 200 kN/m for 1-m-thick ice, but only about 12

kN/m for ice that is 0.1 m thick. Thus, if conditions are favorable for
overthrusting, flexural breakage seems likely to occur at thrust forces
lower than those needed for buckling according to standard theory.

The energetics of ridge formation

The energy needed to form a pressure ridge is assumed to be derived
solely from the adjacent ice sheet, which thrusts with force FV per unit
width in the x-direction. In order to build a ridge, potential energy has
to be supplied to lift ice against gravity in the sail, and to push ice
down against buoyancy in the keel. Energy is dissipated in the ice frac-
ture process, and in overcoming frictional resistance between the ice frag-
ments. For a lower limit estimate of the energy needed to build ridges,
the energy dissipated in fracture and friction is neglected.

To illustrate the method, a pressure ridge can be idealized as shown
in Figure 58, and the ridge and the formation process can be taken as sym-
metrical about the center line of the ridge, with horizontal displacements
dx referred to that center line.

Work done by the ice sheet can be written as

dW - F dx *

* "The mass per unit width M for half of the ridge is

Mk-p h2 cot c

s 2

Figure 58. Idealized cross section of new pres-
sure ridge.
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where M. and Hk are masses for sail and keel respectively, ps and

Pk are mean bulk densities, and as and k are the angles of repose
for sail and keel.

The potential energy of the sail Es is

E g h/3 - -- g h 3 cot aE 8 - MPs gs

and the potential energy of the keel Ek Is

E -hk/
3Ek "k gaffh3

where gaff is the effective value of g for submerged ice, i.e.

Pwg

gaff " (1

in which pi is the density of unbroken ice and pw is water density. Thus,

1) h kEk-M k (P - 1 3g

I-- P

1- Ogw cot a

The total potential energy of the ridge (E) is therefore

E-E + E A6[  Ts h's cot +  P ( W- 1)h 3  cot k]
s k 6 sss k p I k

Equating work done by the ice sheet to energy gained by the ridge

dW/dx - dE/dx

or,

F1 = dE/dx

dE dh
dh dx

As the ice sheet of thickness t thrusts a distance dx, it contributes
an increment of mass dM:

d p tt dx
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or,

dM
d P I t

Using this relation, dh/dx can be expressed as

dh dH dh

In order to take the analysis further, additional assumptions have to
be made. It is commonly assumed that the porosity of the ice rubble n Is
uniform, through both the sail and the keel. Thus

P Pk (l-n)Pi

Some dubious assumptions have also been made about isostatic equilibrium.
It has been assumed that the center of the ridge is in isostatic equili-
brium, so that hs/hk - (pw/pi)-l. Taking Pw = 1.026 Mg/m3 , and

p, _ 0.9 Mg/m 3 for sea ice fragments equilibrated with seawater,
hk/hs would be about 7 according to this assumption. However, this is
unrealistic, and It would be a bit closer to the mark to assume Isostatic
equilibrium for the complete sail against the complete keel, i.e.

hs Coos h 2r )Ctohcota = hK(.! - l)cotc k

or,

h j cotak (p 1/2

If geometric similarity is somehow maintained during the ridge-buildlng
process, hs/hk is constant, I.e.

s - Ch k

Making these assumptions,

dl - (l-n)P1 ha(Cota  + C2 cotok)dh s k

(1-n)pig +dE 2 h2[cota + ( I)C 3 cota k ]
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Finally,

dE dh dE dM dh
dh dx dh dx dM

+ - 1)c 3

Pi g t h cotcz. PJ
2 cota8 + C2

cot

To avoid algebraic nightmares, we can take numerical values for the
dimensionless constants, c.g.

!P -) -0.,1.

*L or ak might vary between about 200 and 330, so that cotas/cotak
(or the inverse ratio) might be in the range 0.56 to 1.78. Corresponding
values of C would then be in the range 0.5 to 0.28 (i.e. hk/hs in the
range 2 to 3.6).

The expression for the thrust force F' can now be written

A aF' = Plg th 8

where A might have values in the range 0.71 to 0.96 (A 1 1 for a rubble
field, for thickened brash ice, or for a "kite-shaped" pressure ridge).

For ice which is I m thick, this gives F' In the range 3.14 h. kN/m
to 4.22h, kN/m when hs Is in metres. Taking realistic values of h.,

* say 3 to 5 m, F' for t - I m is about 10 to 20 kN/m. This is the force
level developed by a strong wind blowing over 10 to 20 km (see preceding
notes on wind action). Parmerter and Coon (1972) considered that ridge-
building forces were an order of magnitude lower than this, i.e. 1 kN/m.

Similar methods can be applied to brash Ice using fewer assumptions.
The limiting thickness of pressure ridges, including ridges formed against
fixed structures and ship hulls, can be deduced by these methods, and by
other methods derived from soil mechanics and plasticity theory (Mellor
1980). Some results were outlined in the foregoing section on mechanical
properties of brash ice.

The mechanics of pressure ridge formation

Where floating ice thrusts against a fixed object of limited width, or
where a rigid object is embedded in straining ice, wind or current forces
can cause the ice to fail by flexure, buckling or crushing. However, the
forces likely to be produced by moderate winds or currents seem Insuffi-
cient to crush thick ice across a broad front, or to buckle it according to
the generally accepted model. Flexural breaks seem more likely, provided
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that local conditions favor the initiation of flexure. It is probably
unrealistic to consider pressure ridge formation as a process of elastic
deformation and brittle fracture. Sustained wind loads are likely to
induce creep deformation and creep rupture, processes which can develop at

stress levels well below those involved in elastic straining to failure.
At present, the processes of pressure ridge formation are not well under-
stood.
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